Методика преподавания темы “Электромагнитные колебания” в средней школе с использованием компьютерных технологийРефераты >> Педагогика >> Методика преподавания темы “Электромагнитные колебания” в средней школе с использованием компьютерных технологий
Ссылаясь на динамическую модель, учащимся напоминают, что заряд в конденсаторе меняется периодически, после чего ставится задача – выяснить, как зависят от времени заряд, сила тока в цепи и напряжение на конденсаторе.
Данные зависимости находятся по традиционной методике. После того, как найдено уравнение колебаний заряда конденсатора, учащимся демонстрируется картинка, на которой изображены графики зависимости заряда конденсатора и смещения груза от времени, представляющие собой косинусоиды.
По ходу выяснения уравнения колебаний заряда конденсатора вводятся понятия периода колебаний, циклической и собственной частот колебаний. Затем выводится формула Томсона.
Далее получают уравнения колебаний силы тока в цепи и напряжения на конденсаторе, после чего демонстрируется картинка с графиками зависимости трех электрических величин от времени. Внимание учащихся обращается на сдвиг фаз между колебаниями силы тока и напряжения и его отсутствием между колебаниями напряжения и заряда.
После того, как выведены все три уравнения, вводится понятие затухающих колебаний и демонстрируется картинка, на которой изображены эти колебания.
На следующем уроке подводятся краткие итоги с повторением основных понятий и решаются задачи на нахождение периода, циклической и собственной частот колебаний, исследуются зависимости q(t), U(t), I(t), а так же различные качественные и графические задачи.
3.3 Методическая разработка трех уроков.
Приведенные ниже уроки разработаны в виде лекций, так как эта форма, по моему мнению, является наиболее производительной и оставляет в данном случае достаточно времени для работы с динамическими демонстрационными моделями. При желании эта форма может быть легко трансформирована в любую другую форму проведения урока.
УРОК № 1.
Тема урока: Колебательный контур. Превращения энергии в колебательном контуре.
Объяснение нового материала.
Цель урока: объяснение понятия колебательного контура и сути электромагнитных колебаний с использованием динамической модели “Идеальный колебательный контур”.
Колебания могут происходить в системе, которая называется колебательным контуром, состоящим из конденсатора емкостью С и катушки индуктивностью L. Колебательный контур называется идеальным, если в нем нет потерь энергии на нагревание соединительных проводов и проводов катушки, т. е. пренебрегают сопротивлением R.
(Именно такой идеальный колебательный контур вы видите на экранах. Это - динамическая модель колебательного процесса, которая поможет нам разобраться с основными понятиями и законами электромагнитных колебательных процессов. Здесь вы видите источник тока схематичные изображения конденсатора и катушки индуктивности).
Давайте сделаем в тетрадях чертеж схематичного изображения колебательного контура.
Чтобы возникли электрические колебания в этом контуре, ему необходимо сообщить некоторый запас энергии, т.е. зарядить конденсатор. Когда конденсатор зарядится, то электрическое поле будет сосредоточено между его пластинами.
(Давайте проследим процесс зарядки конденсатора и остановим процесс, когда зарядка будет завершена).
Итак, конденсатор заряжен, его энергия равна
, но ,
поэтому , следовательно,
.
Так как после зарядки конденсатор будет иметь максимальный заряд (обратите внимание на пластины конденсатора, на них расположены противоположные по знаку заряды), то при q=qmax энергия электрического поля конденсатора будет максимальна и равна
.
В начальный момент времени вся энергия сосредоточена между пластинами конденсатора, сила тока в цепи равна нулю. (Давайте теперь замкнем на нашей модели конденсатор на катушку). При замыкании конденсатора на катушку он начинает разряжаться и в цепи возникнет ток, который, в свою очередь, создаст в катушке магнитное поле. Силовые линии этого магнитного поля направлены по правилу буравчика.
При разрядке конденсатора ток не сразу достигает своего максимального значения, а постепенно. Это происходит потому, что переменное магнитное поле порождает в катушке второе электрическое поле. Вследствие явления самоиндукции там возникает индукционный ток, который, согласно правилу Ленца, направлен в сторону, противоположную увеличению разрядного тока.
Когда разрядный ток достигает своего максимального значения энергия магнитного поля максимальна и равна
,
а энергия конденсатора в этот момент равна нулю. Таким образом, через t=T/4 энергия электрического поля полностью перешла в энергию магнитного поля.
(Давайте понаблюдаем процесс разрядки конденсатора на динамической модели. Обращаю ваше внимание на то, что такой способ представления процессов зарядки и разрядки конденсатора в виде потока перебегающих частиц, является условным и выбран для удобства восприятия. Вы прекрасно знаете, что скорость движения электронов очень мала (порядка нескольких сантиметров в секунду). Итак, вы видите, как, при уменьшении заряда на конденсаторе изменяется сила тока в цепи, как изменяются энергии магнитного и электрического полей, какая между этими изменениями существует связь. Так как контур является идеальным, то потерь энергии нет, поэтому общая энергия контура остается постоянной).
С началом перезарядки конденсатора разрядный ток будет уменьшаться до нуля не сразу, а постепенно. Это происходит опять же из-за возникновения противо э. д. с. и индукционного тока противоположной направленности. Этот ток противодействует уменьшению разрядного тока, как ранее противодействовал его увеличению. Сейчас он будет поддерживать основной ток. Энергия магнитного поля будет уменьшаться, энергия электрического – увеличиваться, конденсатор будет перезаряжаться.
Таким образом, полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей
Колебания, при которых происходит периодическое превращение энергии электрического поля конденсатора в энергию магнитного поля катушки, называются ЭЛЕКТРОМАГНИТНЫМИ колебаниями. Так как эти колебания происходят за счет первоначального запаса энергии и без внешних воздействий, то они являются СВОБОДНЫМИ.