Индивидуализация в процессе обучения математике
Рефераты >> Педагогика >> Индивидуализация в процессе обучения математике

Уровневая дифференциация предполагает такую организацию обучения, при которой, обучаясь по одной программе, школьники имеют возможность осваивать ее на разных уровнях: базовом, повышенном, углубленном. Базовый уровень знаний определяет возможность дальнейшего качественного усвоения школьного курса. Важно, что учащиеся выполняют задания разного уровня сложности. Это условие является ключевым в определении новых подходов к контролю за уровнем усвоения знаний и умений. Выполнение заданий базового уровня дает возможность учащимся получить оценку „удовлетворительно”. Выполнение заданий базового уровня и повышенного – оценку „хорошо”, а базового, повышенного и углубленного уровней – оценку „отлично”.

Г.А.Русских так определяет цель технологии уровневой дифференциации: «Создать условия для развития умений успешно самостоятельно работать на уроке, ориентируясь на уровень собственных познавательных интересов и учебных возможностей, но не ниже базового уровня».[29]

В основе данной технологии лежит идея о том, что “все учащиеся способны хорошо учиться, а различие их по уровню обучаемости сводится ко времени, необходимому ученику для усвоения учебного материала. Следовательно, если каждому ученику отводить время, соответствующее его личным способностям и возможностям, то можно обеспечить усвоение школьной программы”.[29]

Для урока в режиме уровневой дифференциации характерна уровневая цель:

1 уровень – репродуктивный. На этом уровне ученик различает и запоминает содержание учебного материала и может воспроизвести в объеме стандартных требований урока;

2 уровень – конструктивный. Это уровень запоминания учебного материала, понимания его и умения использовать в знакомой учебной ситуации;

3 уровень – творческий. Это уровень понимания учебного материала, умения его воспроизводить, умения использовать в знакомой и измененной учебной ситуациях и умения выполнять самостоятельную работу творческого характера.

Задания первого типа предполагают воспроизведение определения, формулировки правила, закона или теоремы; применение учащимися понятия (закона, правила) по образцу в соответствии с предлагаемым ориентирами.

Задания второго типа представлены задачами конструктивного характера, при выполнении которых учащимся приходится использовать несколько алгоритмов, формул, теорем, если все они даны в ясном виде. При выполнении таких заданий ученик должен увидеть в измененной ситуации образец.

К третьему типу относятся задания творческого характера, при выполнении которых учащимся необходимо найти выход из нестандартной ситуации. Учитель задает вопрос «почему», «докажите».

Существуют разные методические приемы использования дифференцированных заданий. Задания трех уровней сложности можно использовать на этапе закрепления нового материала, при повторении, при выполнении домашнего задания, в письменной работе и т.д.

Рассмотрим примеры использования дифференцированных заданий на уроке математики.

Чухрова Н. предлагает такую дифференцированную самостоятельную работу по теме «Площади фигур» (по одному заданию на урок). [39]

1-й вариант – основной уровень;

2-й вариант – более сложный уровень;

3-й вариант – продвинутый уровень.

ВАРИАНТ 1

1. Гипотенуза равнобедренного прямоугольного треугольника равна 3 дм. Найдите площадь треугольника.

2. Найдите площадь правильного треугольника со стороной 6 см.

3. Стороны прямоугольника относятся как 8:15, диагональ равна 34 см. Найдите площадь треугольника.

4. Вычислите сторону квадрата равновеликого прямоугольнику со сторонами 36 см и 4,9 дм.

ВАРИАНТ 2

1. Найдите площадь треугольника прямоугольного треугольника, если его катеты относятся как 3:4, а гипотенуза равна 25 см

2. Площадь правильного треугольника равна . Найдите длину его биссектрисы.

3. Вычислите площадь прямоугольника, если его диагональ равна 13 см, а одна из его сторон составляет диагонали.

4. Стороны параллелограмма 3 дм и 52 дм. Угол, который образует меньшая сторона с высотой, равен 600. Найдите площадь параллелограмма.

ВАРИАНТ 3

1. Докажите. Что в прямоугольном треугольнике произведение катетов равно произведению гипотенузы на высоту к ней. Найдите площадь треугольника.

2. Найдите площадь правильного треугольника, если радиус вписанной окружности равен см.

3. Вычислите периметр прямоугольника, если его площадь 375 дм2, а одна сторона составляет 60% другой.

4. Вычислите площадь прямоугольного треугольника, если гипотенуза его на 0,8 дм больше катета, а другой катет равен 20 см.

Цель уровневой дифференциации - достижение всеми школьниками базового уровня подготовки, представляющего собой государственный стандарт образования, и одновременно создание условий для развития учащихся, проявляющих интерес и способности к математике. В соответствии с этим и контроль должен иметь двухступенчатую структуру. А именно, в ходе контроля необходимо выделять два принципиальных подхода – проверку достижения уровня обязательной подготовки и проверку достижения на повышенном уровне. Например, по теме «Квадратные уравнения» Лазарева Т. для зачета предлагает использовать следующие виды заданий:

Обязательная часть

1. Решите уравнения:

а) 2x-x2=0; в) 3x2+5x-2=0;

б) x2-16=0; г) x2-3x-1=0.

Дополнительная часть.

2. Решите уравнение (2x-4)(x-3)=5(6-2x).

3. Сумма двух последовательных натуральных чисел на 71 меньше их произведения. Найдите эти числа.[17]

Приведем пример текста контрольной работы по алгебре в VΙΙ классе по теме “Преобразование целых выражений”, предложенный Морозовой Л.В. [24] Первый вариант – на уровне обычного государственного стандарта, второй – на повышенном уровне сложности.

Вариант 1

1. Упростите выражение:

а) 2c(1+c)-(c-2)(c+4);

б) (y+2)2-2y(y+2);

в) 30x+3(x-5)2;

г) (b2+2b)2-b2(b-1)(b=1)+2b(3-2b)2.

2. Разложите на множители:

а) 4a-3a3; б) ax2+2ax+a;

в) 16 - y4; г) a+a2-b-b2.

4. Докажите, что выражение c2-2c +12 может принимать лишь положительные значения.

Вариант 2

1. Докажите, что при любом целом n значение выражения

(2n-3)2-(4n-1)(n+6) кратно 5.

2. Какое значение принимает выражение a(a+2)+c(c-2) – 2ac при a - c=7?

3. Найдите наименьшее значение выражения 4x2-4x+11.

4. Докажите, что если к произведению трех последовательных чисел прибавить среднее из них, то получится куб среднего числа.

5. Разложите на множители:

а) a2+4ab-3a2b-6ab2+4b2; б) (a+b+c)2 - (a-b-c)2.

Внутриклассная индивидуализация учебной работы.

Необходимость во внутриклассной индивидуализации тем настоятельнее, чем более разнородный класс служит объектом такой индивидуализации. В таком классе индивидуализация может происходить во всех трех формах классной работы: фронтальной, групповой, индивидуальной.


Страница: