Изучение геометрии на уроках математики в 5-6 классахРефераты >> Педагогика >> Изучение геометрии на уроках математики в 5-6 классах
Известно, что воображение становится более "тусклым" в связи с тем, что у детей отсутствуют какие-либо практические умения. А геометрический материал предоставляет хорошую почву для развития этих умений. Именно благодаря геометрическим занятиям , ученики 5 класса дают действительно творческую переработку полученных ими впечатлений, комбинируя их таким образом, что возникают новые сочетания, которых не было в их непосредственном опыте. Такая «эмансипация» воображения детей младшего школьного возраста от непосредственных впечатлений является следствием расширения их опыта, благодаря практическим и лабораторным работам, а также широкому использованию наглядности.
Таким образом, можно сделать вывод, что в 5-6 классах учащиеся уже способны к восприятию довольно абстрактного геометрического материала, но при его изучении необходимо активно использовать наглядность и применять лабораторные и практические работы. Кроме того, важно не только развивать мышление (как отвлеченное, так и наглядно-образное), но и стремиться к формированию обобщенного воображения. В курсе математики 5-6 класса элементы наглядной геометрии развивают логическое мышление учащихся, их пространственные представления и практические навыки.
§4. Анализ действующих учебников математики на предмет содержания геометрического материала
Как показали исследования психологов, возраст детей от 7-12 лет наиболее благоприятен для формирования геометрических представлений. Детям этого возраста присуще яркость восприятия, наглядная образная память, большой интерес к окружающему миру, богатое воображение, способность легко усваивать материал и др.
Ещё в дошкольном возрасте ребёнок встречается с различными линиями, фигурами, поверхностями, формами, под влиянием которых у него формируются геометрические представления. Геометрические представления в этом возрасте носят случайный и хаотичный характер, они не всегда правильные, преимущественно «плоскостные». В начальной школе продолжается процесс накопления детьми представлений о пространстве, необходимых для усвоения элементарных понятий, а затем учащиеся приступают к дальнейшей стадии обобщения и конкретизации свойств и отношений предметов и явлений материального мира по разным признакам: временным, количественным, пространственным.
Обучение в начальной школе ставит своей целью упорядочить эти пространственные представления. Исходя из возрастных особенностей младших школьников, большое значение приобретает наглядность, использование аудиовизуальных средств и применение готовых моделей, изготовленных из картона, пластилина. На уроках учащихся учат находить знакомые им фигуры в окружающей обстановке, видеть их в сложных конфигурациях.
На уроках математики в начальной школе имеют большое значение практические работы: изготовление геометрических фигур, их вычерчивание, вырезание, получение прямого угла перегибанием бумаги, упражнения на формирование навыков работы с наиболее употребляемыми чертёжными инструментами (линейка, угольник, циркуль). Большое внимание уделяется приёму сопоставления и противопоставления фигур.
В начальной школе учащиеся должны уметь:
1 класс:
- изображать прямую, кривую, отрезок, многоугольник;
- находить длину отрезка в см;
- начертить отрезок заданной длины;
- увеличить или уменьшить отрезок на заданное количество см;
- различать углы прямые и непрямые, прямоугольники и квадраты;
- распознавать эти фигуры, называть их и изображать на клеточной бумаге;
2 класс:
-делить отрезок на равные части;
- распознавать и изображать ломаную, окружность, круг, многоугольник;
- измерять длину ломаной.
Характер работ по формированию пространственных представлений во втором классе усложняется, добавляются задачи на деление геометрических фигур на части, упражнения на составление фигур. В 3 классе идёт формирование представления о площади прямоугольника и квадрата. Учащиеся должны знать, что у прямоугольника все углы прямые, а противоположные стороны равны. Учащиеся должны уметь складывать различные фигуры из 2-3 элементарных частей.
Среди задач большинство таких, в которых геометрические фигуры используются для пересчитывания, задачи на деление фигур на части, задачи, связанные с формированием навыков чтения геометрических чертежей с использованием буквенных обозначений; задачи на выяснение геометрической формы предметов и их частей; задачи, развивающие глазомер.
Таким образом, к окончанию начальной школы пространственные представления учащихся становятся более осознанными, полными. Учащиеся, как правило, уже почти свободно ориентируются в пространстве, отмечают направления, определяют положение предметов по отношению к другим предметам, к сторонам горизонта. У них накоплен определённый запас геометрических представлений, терминов. Они могут узнавать пространственный объект в окружающей действительности и находить его графическое изображение. Учащиеся уже могут воспроизвести несложные представления в памяти, в воображении и словесно их описать, а также воспроизвести представления графически в виде предметной модели.
Уроки труда, рисования, математики содержат определённую систему предметов, методов и средств, создающих в уме школьника многообразную категорию пространственных представлений и отношений. Всё это определяет содержание пропедевтической работы учителя по развитию геометрических представлений учащихся начальных классов.
Программа по математики начальных классов уделяет особое внимание развитию конструктивных навыков учащихся, которые будут эффективны лишь при целенаправленном и систематическом их формировании на протяжении всех лет обучения в школе. При правильной постановке преемственности в их развитии, при строгом учёте психологических возрастных особенностей учащихся.
Министерством образования и науки РФ к использованию в образовательном процессе на 2008/2009 учебный год рекомендованы учебники по математике для 5-6 классов следующих авторских коллективов:
1. Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд,
2. И.И. Зубарева, А.Г. Мордкович,
3. С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин,
4. В.Г. Дорофеев, С.Б. Суворова, И.Ф. Шарыгин,
1. Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд, «Математика: 5 класс», «Математика: 6 класс», Математика 5 класс
Глава 1. Натуральные числа
§1. Натуральные числа и шкалы
Отрезок. Длина отрезка. Треугольник
С практической точки зрения вводится понятие отрезка, как линии, которая соединяет две точки, эти точки называются концами отрезка.
С помощью рисунка вводится понятие лежать между
Сообщается, что отрезки можно сравнивать с помощью измерения и вводятся единицы измерения длины отрезков, которые детям уже известны, фактически идет повторение.
На основе рисунка вводится не только понятие треугольника и его составляющих частей, но понятие многоугольника, по количеству вершин.