Зачетная система при обучении математикеРефераты >> Педагогика >> Зачетная система при обучении математике
10. В треугольную пирамиду, стороны основания которой равны 4см, 7см и 5см, вписали конус с образующей в 8см. Вычислите боковую поверхность пирамиды. (4 очка)
11.Диагональным сечением правильной четырехугольной пирамиды является прямоугольный треугольник, катет которого равен а. Вычислите радиус описанного около пирамиды шара. (4 очка)
Подведение итогов зачета. Оценка за зачет-практикум может ставиться, например, по таким критериям: набрано до 10 очков – оценка “2”; 11–15 очков – “3”; 16–19 очков – “4”; 20–29 очков – “5”. За каждые 10 очков после 20 можно ставить дополнительно оценку “5”.
Зачет-практикум можно проводить на одном уроке (45 мин), можно на сдвоенном. Если зачет проводится два урока, то целесообразно после разминки провести ее проверку и разобрать задачи, вызывающие затруднения. В этом случае критерии выставления оценки за зачет нужно изменить: набрано до 20 очков – оценка “2”; 21-30 очков – “3”; 31–40 очков – “4”; свыше 41 очка – “5”. Для подведения итогов учителю рекомендуется иметь зачетную карту.
Примечание: ноль ставиться в тех случаях, когда ученик решал задачу и не справился.
В конце урока целесообразно вывесить на стенде решение задач, дававшихся на зачете, чтобы учащиеся могли проверить себя. Подведение итогов проводится на следующем уроке: объявляется количество набранных очков и оценка. Рекомендуется разобрать задачи, вызвавшие у учащихся наибольшие трудности.
Опыт проведения зачетов показал, что учащиеся стали более ответственно подходить к изучению математики, заранее готовиться к зачету, повысился интерес к предмету. Можно надеяться, что систематическая организация контроля знаний старшеклассников в форме зачета приведет к повышению качества знаний, умений и навыков [1].
Тематический зачет – микроэкзамен.
Цель микроэкзамена состоит в проверке как теоретической, так и практической подготовки по каждому разделу курса геометрии.
Известно, что традиционно оценка результатов сдачи зачета осуществляется по двухбалльной шкале: "зачтено" – "не зачтено". Но экзамен есть экзамен (пусть даже "микро"), поэтому учащиеся получают две оценки по пятибалльной шкале – отдельно за теорию и за решение задач. При оценке решений задач учитываются теоретическая обоснованность решений, их количество и выбранный уровень: если решены задачи только уровня А, минимального уровня сложности, то ставится оценка "3" и т. д. Начиная с IX класса считается престижным на оценку "5" решать "звездные" задачи.
Остановимся на практике подготовки и проведения тематических зачетов.
1. Примерно за месяц до срока проведения зачета учитель предъявляет теоретические вопросы и тексты задач по очередной теме (три уровня сложности), если зачет планируется в открытой форме. Если же зачет предусмотрен в закрытой форме, то предлагаются задачи, подобные тем, которые будут вынесены на зачет.
2. Деление класса на подгруппы позволяет за два урока выслушать на зачете устные ответы каждого ученика у доски по теории. Решения задач учащиеся оформляют на местах в письменной форме. Решения задач тщательно проверяются учителем после зачета, и оценки объявляются на очередном занятии.
3. Каждый ученик VIII–XI классов сдает все зачеты, предусмотренные ежегодным календарно-тематическим планом. Итоговая оценка по геометрии (за семестр, полугодие, год) в первую очередь зависит от результатов сдачи учащимися тематических зачетов [6].
Зачет-экстерн
В X классе можно проводить зачет-экстерн.
К этому времени у учеников складывается определенная система знаний и умений, а в социальном плане появляется желание самоутвердиться. Такую возможность им предоставляет зачет-экстерн. Например, при изучении темы «Круглые тела» ученики заранее знакомятся с планом работы на четверть: 1) Цилиндр – 3 ч; 2) Конус – 3 ч; 3) Контрольная работа – 1 ч; 4) Шар – 5 ч.
В начале 11 четверти желающим предлагается параллельно с изучением тем «Цилиндр» и «Конус» самостоятельно изучить тему «Шар» и в течение недели отчитаться по этой теме во внеурочное время. В классном уголке вывешивается подробная информация о том, что надо знать и уметь к зачету.
В ходе подготовки к зачету планируются консультации. Для сдачи зачета приходят по 2–3 человека. План сдачи зачета выглядит примерно так. Теорию каждый ученик отвечает у доски. Затем решает 2 задачи. Одна из них – из предложенных к зачету, другая – из дидактических материалов по геометрии или из задачников для поступающих в вузы. В классном уголке дается информация о ходе сдачи зачета.
При такой форме организации зачета каждый ученик имеет право выбора: работать со всем классом или изучать тему самостоятельно. Зачет-экстерн сдают, как правило, и те, кто уверенно чувствует себя в геометрии, и те, кто на обычных уроках не блещет своими результатами [4].
6. Пересдача зачетов
При пересдаче зачета допустимо, чтобы ученик отчитывался только за те задания, которые он не выполнил в предыдущий раз, а не за все зачетное задание. Желательно ликвидировать задолженности учащихся как можно скорее, иначе они будут накапливаться, и затруднять изучение последующих тем. Время на такую пересдачу нетрудно выделить непосредственно на уроках. Например, ученику, не сдавшему зачет, на последующих уроках во время проведения опроса или во время самостоятельной работы может быть предложена индивидуальная карточка-задание, содержащая задачи, в которых им были допущены ошибки. В другом случае при устном опросе такой ученик получит задачу из зачета в качестве дополнительного задания. Опытные учителя большое внимание уделяют анализу результатов зачета. В результате анализа зачетных работ устанавливается, насколько каждый ученик и весь класс в целом справились с каждым заданием. Это достаточная информация о том, овладели ли ученики нужными знаниями и умениями, какие пробелы и недочеты следует устранить. Теперь можно наметить, какой материал нужно повторить, какие дополнительные упражнения выполнить с классом, с частью класса, с отдельными учениками и на каких уроках.
Так, например, при зачете в 5 классе по теме «Умножение и деление натуральных чисел» было замечено, что лишь отдельные ученики при выполнении примеров на вычисление допускали ошибки при делении, но довольно большое число учеников не справились с решением задач на движение. В этом классе учитель провел индивидуальную работу с учениками с учетом этой вычислительной ошибки, включая аналогичные примеры в домашнee задание. Такая работа не потребовала много времени: ученики досдали зачет в течение двух-трех уроков после зачета. Другая ситуация сложилась с задачей на движение. Отсутствие этого умения, как показала беседа с учителем, оказалось неслучайным. В ходе изучения темы такие задачи решались устно, фронтально, где, как правило, активно участвовали лишь хорошо подготовленные ученики. Это создало впечатление достаточно устойчивого умения решать эти задачи. Теперь учителю пришлось уделить специальное внимание разбору решения подобных задач и отработке соответствующего умения. И только когда можно было с уверенностью сказам, что учащиеся вооружились умением решать задачи на движение, была проведена проверочная работа. Ее результат рассматривался как выполнение зачетного задания [3].