Датчики потока
Рефераты >> Технология >> Датчики потока

Доплеровские измерители потока непрерывного действия.

На рис. 5,в показано, как могут располагаться преобразователи в доплеровских измерителях потока непрерывного действия. В этих измерителях потока используется известный эффект изменения (понижения) частоты звука, детектируемого движущимся приемником, удаляющимся от неподвижного источника звука (эффект Доплера). Если излучатель и приемник неподвижны, а движется объект (частица в текучей среде), отражающий ультразвуковую волну, то обусловленный эффектом Доплера сдвиг частоты при симметричном расположении преобразователей по отношению к аксиально-симметричному потоку рассчитывается по формуле

, (1.16)

где fd- доплеровский сдвиг частоты; f0- частота излучаемой ультрозвуковой волны; u - скорость объекта (частицы в текучей сркде); c - скорость звука; q - угол между направлением излучения (приема) ультрозвуковой волны и осью трубы или кровеносного сосуда. Если поток не имеет аксиальной симметрии или преобразователи расположены несимметрично, то в формулу (1.16) нужно вводить дополнительный тригонометрический коэффициент.

Самое важное преимущество доплеровского измерителя потока непрерывного действия - возможность измерения кровотока с помощью преобразователей, расположенных на поверхности тела с одной стороны кровеносного сосуда. Измерители потока этого типа могут работать с жидкостями, содержащими включения газов или твердых тел. Можно указать и ряд других преимуществ этих устройств: 1) временные задержки сигнала в них минимальны и определяются главным образом характеристиками фильтров; 2) при измерении кровотока помехи от сигнала электрокардиограммы (ЭКГ) незначительны; 3) такие устройства можно устанавливать в дешевых регуляторах потока.

При использовании доплеровского измерителя потока непрерывного действия для получения сигнала доплеровского сдвига необходимо наличие в текучей среде каких-либо частиц. Сигнал доплеровского сдвига не является одночастотным гармоническим сигналом, что обусловлено рядом причин:

1. Профиль распределения скорости по поперечному сечению потока (профиль потока) неоднороден. Частицы движутся с различными скоростями, генерируя различные по частоте доплеровские сдвиги.

2. Частица отражает ультразвуковую волну в течении короткого промежутка времени.

3. Хаотическое вращение частиц и турбулентность вызывают различные доплеровские сдвиги.

Два других недостатка доплеровского измерителя потока непрерывного действия - практически полное отсутствие информации о профиле потока и невозможность определения направления потока без дополнительной обработки сигнала.

Импульсные доплеровские измерители потока.

Импульсный доплеровский измеритель потока работает в радарном режиме и выдает информацию о профиле потока текучей среды. На рис. 6 иллюстрируется принцип работы этого устройства. Преобразователь возбуждается короткими посылками сигнала несущей частоты от генератора. Этот преобразователь выполняет функции излучателя и приемника; отражаемый сигнал с доплеровским сдвигом принимается с некоторой временной задержкой относительно момента излучения первичного сигнала. Временный интервал между моментами излучения и приема сигнала является непосредственным указателем расстояния до отражающей частицы (дальности). Следовательно, можно получить полную “развертку” отражений сигнала поперек трубы или кровеносного сосуда. Профиль скорости в поперечном сечении кровеносного сосуда получается в результате регистрации доплеровского сдвига сигнала при различных временных задержках. С помощью импульсного доплеровского измерителя потока можно оценить диаметр кровеносного сосуда. Как видно из рис. 6, принимаемые сигналы А и С обусловлены отражениями от ближней и дальней стенок сосуда соответственно. Расстояние между точками, где происходят эти отражения, непосредственно связано через простые геометрические соотношения с диаметром сосуда.

Аналогичный принцип измерения лежит в основе метода ультразвукового сканирования в амплитудном режиме (А-режиме) и метода эхо-кардиографии. Ультразвуковой преобразователь устанавливается напротив участка тела или органа, подлежащего сканированию. Этот преобразователь излучает ультразвуковой сигнал, испытывающий отражение на любой неоднородности ткани вдоль направления сканирования. Задержка между временем излучения и приема сигнала может быть использована для определения места локализации этой неоднородности вдоль определенного пути сканирования.

Длительность излучаемого импульса является важным фактором при использовании импульсного доплеровского измерителя для регистрации кровотока. В идеале это должен быть очень короткий импульс, чтобы получить хорошее разрешение по расстоянию. С другой стороны, для достижения достаточно высокого значения отношения сигнал/шум и хорошего разрешения по скорости длительность этого импульса должна быть достаточно велика. Типичный компромиссный вариант - использование импульсов с частотой повторения 8 МГц и длительностью 1 мкс.

Доплеровским измерительным системам, работающим в импульсном режиме, присуще внутреннее ограничение. Оно выражается в том, что при заданной дальности ограничен диапазон измеряемых скоростей. Это вынуждает использовать импульсы с меньшей частотой повторения fr. Действительно, для устранения неопределенности в определении расстояния (дальности) эхо-сигнал от каждого импульса должен быть проанализирован до момента посылки следующего импульса. Следовательно,

, (1.17)

где Rm - максимальная определяемая при данном измерении дальность. Теорема о дискретизации утверждает необходимость выполнения условия

fr>2fd. (1.18)

Из соотношений (1.17), (1.18) и (1.16) получаем

, (1.19)

т.е. произведение максимальной дальности на максимальную скорость - ограниченная скорость. Это означает, что нельзя измерить высокие скорости при больших расстояниях до отражающего объекта. Спектральное уширение, которое может привести к появлению в сигнале спектральных составляющих с частотами, превышающими несущую частоту, а также неидеальность характеристик фильтров нижних частот, используемых для исключения эффекта наложения спектров, приводит к еще более жестким ограничениями по сравнению с тем, которое определяется формулой (1.19).

В импульсных доплеровских системах преобразователи имеют более сложную конструкцию, чем в доплеровских системах непрерывного действия. Любой кристаллический преобразователь характеризуется высокой добротностью Q (узкой частотной характеристикой) и поэтому после окончания возбуждающего электрического сигнала довольно долго осциллирует на своей резонансной частоте. Импульсный доплеровский преобразователь модифицируется путем добавления к нему спереди или сзади массивного демпфера, что обеспечивает уменьшение (уширение частотной характеристики) кристалла. Типичные значения модифицированной добротности - от 5 до 15. При использовании одного общего преобразователя в качестве излучателя и приемника отключение излучателя осуществляется с помощью логического элемента (вентиля). Однокаскадный логический элемент не обеспечивает надлежащей развязки мощного сигнала, возбуждающего излучатель, от исключительно слабого принимаемого сигнала. Проблема развязки решается последовательным включением двух логических элементов.


Страница: