Датчики потока
Рефераты >> Технология >> Датчики потока

где D - диаметр преобразователя и l - длина волны.

В области дальнего поля пучок расходится, причем интенсивность ультразвуковой волны в пучке изменяется обратно пропорционально квадрату расстояния от преобразователя. Для угла расходимости пучка имеем

sinf=1.2l/D, (1.13)

Эффект расходимости пучка ухудшает пространственное разрешение, поэтому область дальнего поля использовать не рекомендуется. Для обеспечения работы в области ближнего поля нужны большие преобразователи и высокие рабочие частоты. В промышленных применениях пространственное разрешение при измерении потока можно получить, выбирая рабочую частоту и размер преобразователя таким образом, чтобы размер области ближнего поля приближенно соответствовал диаметру потокопровода (трубы, трубопровода).

Правильный выбор рабочей частоты очень важен для измерителей потока крови. Для пучка с постоянным поперечным сечением мощность ультразвуковой волны экспоненциально спадает с расстоянием из-за ее поглощения в ткани. С этой точки зрения предпочтительнее низкие рабочие частоты, поскольку коэффициент поглощения ультразвука квазилинейным образом возрастает с увеличением частоты. С другой стороны, наиболее распространенные ультразвуковые измерители потока - доплеровские датчики потока - работают на принципе детектирования мощности ультразвуковой волны, рассеиваемой движущимися красными кровяными тельцами, причем рассеиваемая мощность пропорциональна четвертой степени частоты. Таким образом, в этих измерителях потока для увеличения детектируемой мощности необходимо увеличивать рабочую частоту. Компромисс достигается при выборе рабочей частоты в диапазоне от 2 до 10 MГц.

Датчик потока на принципе измерения времени прохождения сигнала.

Датчик потока, работающий на принципе измерения времени прохождения сигнала - один из простейших ультразвуковых измерителей потока. Он широко используется в промышленности и пригоден также для респираторных измерений и измерений потока крови. На рис. 5 иллюстрируются два возможных способа расположения преобразователей в датчике этого типа. Способ расположения, представленный на рис. 5(а) , имеет очевидное преимущество, заключающееся в возможности закреплять преобразователи на внешней поверхности трубы или кровеносного сосуда, что исключает ограничение потока. На рис. 5(б) показаны преобразователи, изолированные от трубы; они используются для высокотемпературных измерений (например, при газификации каменного угля). В этом случае связь преобразователей со средой осуществляется с помощью буферных стержней или волноводов.

Для конфигурации измерителя потока, показанной на рис. 5(б), эффективная скорость ультразвука в кровеносном сосуде или трубе равна скорости звука с относительно текучей среды плюс компонента, связанная с величиной u - скоростью потока, усредненной вдоль пути распространения ультразвуковой волны. Для ламинированного потока u=1,33, для турбулентного - u=1,07, где - скорость, усредненная по площади поперечного сечения трубы или кровеносного сосуда. Разница в значениях u и объясняется тем, что ультразвук распространяется вдоль одной линии, а не охватывает все поперечное сечение потока. Формула для времени прохождения ультразвукового сигнала между преобразователями вверх по течению (+) и вниз по течению (-) имеет вид

, (1.14)

Из этой формулы следует, что время прохождения меньше для случая распространения ультразвуковой волны “вместе с потоком”, т.е. вниз по течению.

В одной из модификаций этого метода используются короткие акустические импульсы, попеременно пересылаемые в направлении потока и против него, для того чтобы получить значение разности Dt между временем прохождения сигнала вверх по течению и временем его прохождения вниз по течению. Величина Dt пропорциональна средней скорости u и равна

. (1.15)

Эту величину можно измерить, используя два преобразователя, расположенные в соответствии с рис. и попеременно выполняющие функции излучателя и приемника, или используя излучатель и приемник на каждой стороне кровеносного сосуда или трубы. Единственным препятствием на пути практической реализации данного метода является малость величины Dt, значения которой лежат в наносекундном диапазоне; поэтому для достижения адекватной стабильности необходимо сложное электронное оборудование.

На рис. 5(б) представлен более простой вариант ультразвукового датчика потока на принципе измерения времени прохождения сигнала, используемой в некоторых промышленных системах. При подстановке в выражение (1.15) =0 получаем Dt=2Du/c. Скорость звука c может изменяться с температурой, и с этим могут быть связаны значительные погрешности измерения Dt, если учесть, что в формулу для Dt входит не c, а c2.

Большинство стандартных датчиков потока, работающих на принципе измерения времени прохождения сигнала, выполнены по схеме, представленной на рис. 5(а). Преимущества таких датчиков (измерителей) потока заключается в следующем: 1) с их помощью можно измерять потоки самых различных жидкостей и газов, поскольку для проведения измерений не требуется наличие в текучей среде частиц, отражающих ультразвук; 2) они позволяют определять направление потока; 3) их показания сравнительно нечувствительны к изменениям вязкости, температуры и плотностей текучей cреды; 4) из всех серийно выпускаемых измерителей потока промышленные устройства этого типа обеспечивают наивысшую точность измерений.

Рассматриваемые датчики потока пригодны для измерения потоков жидкостей во многих промышленных применениях. В группу текучих сред, с которыми могут работать эти датчики, входят вода, молоко, масло, очищенные сточные воды, фармацевтические жидкости, жидкая бумажная масса. Измеритель потока серии 240, выпускаемый фирмой Controlotron Corp., - пример ультразвукового измерителя потока для промышленных применений, закрепляемого на внешней поверхности трубопровода. Это устройство позволяет измерять скорость потока жидкости в диапазоне от 0,3 мм/c до 9,14 м/с с точностью до 1% и может работать с трубой любого диаметра от 2,54 см до 1,52 м независимо от материала трубы и толщины ее стенок. Согласно спецификации, предоставляемой фирмой Controlotron, типичное разрешенияе измерителя серии 240 составляет 1,52 мм/с.

Ультразвуковые измерители потока были опробованы также в качестве пневмотахометров - для измерения мгновенного значения объемного расхода вдыхаемого или выдыхаемого газа. Ультразвуковые пневмотахометры имеют следующие теоретические преимущества: 1) высокое быстродействие; 2) широкий динамический диапазон; 3) отсутствие движущихся частей; 4) пренебрежимо малое влияние на поток; 5) естественную двунаправленность; 6) легкость очистки и стерилизации. В настоящее время ультразвуковые пневмотахометры находятся все еще в стадии разработки. Есть несколько проблем, препятствующих успешному внедрению этих устройств: 1) низкая акустическая эффективность передачи ультразвука через газы; 2) широкий диапазон изменений состава, температуры и влажности газа; 3) неудовлетворительное понимание природы ультразвукового поля и характера его взаимодействия с движущимся газом .


Страница: