Групповая работа на уроках математики в начальной школеРефераты >> Педагогика >> Групповая работа на уроках математики в начальной школе
Наложив палетку на геометрическую фигуру, подсчитывают число целых и нецелых квадратных сантиметров, которые в ней содержатся. Для нахождения площади фигур, начерченных в тетрадях, в качестве палетки используют разлиновку тетрадей. Каждый раз подчеркивают, что найденная площадь равна приблизительно такому – то числу (около 20 см2).
В это же время приступают к сопоставлению площади и периметра многоугольников с тем, чтобы дети не смешивали эти понятия, а дальнейшем четко различали способы нахождения площади и периметра прямоугольника. Выполняя практические упражнения с геометрическими фигурами, дети подсчитывают число квадратных сантиметров и тут же измеряют периметр многоугольника в сантиметрах.
На следующем этапе учащиеся знакомятся с приемом вычисления площади прямоугольника (квадрата) (Приложение №2). Сначала рассматривают прямоугольники, которые уже разделены на квадратные сантиметры. Их площадь находят путем подсчета квадратных сантиметров в одном ряду, а затем полученном число умножают на число рядов. Очень важно при этом установить соответствие между длиной прямоугольника и числом квадратных сантиметров, прилегающих к длине; шириной прямоугольника и числом рядов.
Затем дети чертят прямоугольник по заданным длинам сторон, разбивают его на ряды, а один ряд на квадраты и снова убеждаются в соответствии: если длина 4 см, то в одном ряду, прилегающем к этой стороне, содержится 4 кв.см, если ширина 3 см, то таких радов оказывается 3. число квадратных сантиметров равно произведению чисел 4 и 3. делается вывод: чтобы вычислить площадь прямоугольника, нужно знать его длину и ширину (в одинаковых единицах) и найти произведение этих чисел (Приложение № 1, 2).
В процессе решения задач на вычисление площади и периметра прямоугольников следует показать, что фигуры, имеющие одинаковую площадь, могут иметь неодинаковый периметры, и что фигуры, имеющие одинаковые периметры, могут иметь неодинаковые площади. Например, это легко наблюдать при заполнении таблицы вида:
Длина |
7 см |
6 см |
5 см |
4 см |
Ширина |
1 см |
2 см |
3 см |
4 см |
Периметр |
16 см |
16 см |
16 см |
16 см |
Площадь |
7 см2 |
12 см2 |
15 см2 |
16 см2 |
Далее учащиеся знакомятся с дм2. Как и при введении см2, прежде всего формируется наглядный образ новой единицы: дети чертят на клетчатой бумаге квадрат со стороной 1 дм и затем вырезают его, составляют фигуры из нескольких квадратных дециметров, называя их площадь и периметр. Устанавливается соотношение между квадратным дециметром и квадратным сантиметром: 1 дм2 = 100 см2. для этого просто вычисляется площадь квадрата со стороной 1 дм = 10 см (10*10 = 100). Учащиеся сами вычисляют площадь квадрата со стороной 1 дм в квадратных сантиметрах и записывают: 1 дм2 = 100 см2 затем дети учатся заменять мелкие единицы крупными и наоборот. Для достижения возможности решать задачи с данными, полученными путем непосредственных измерений при выполнении практических работ, необходимо выполнить ряд упражнений: "Выразить в см2: 2 дм2; 1 дм2 74 см2 и т.п. Выразить в дм2 и см2: 570 см2; 1250 см2".
На следующем этапе аналогично рассматривается квадратный метр. Обращается особое внимание на решение практических задач (Приложение № 3). Должна быть составлена и усвоена таблица всех изученных единиц площади и их отношений.
Наряду с решением задач на нахождение площади прямоугольника по данным длине и ширине решают обратные задачи на нахождение одной из сторон по известной площади и другой стороне прямоугольника.
Заключение
Важнейшей задачей математического образования является вооружение учащихся общими приемами мышления, пространственного воображения, развитие способности понимать смысл поставленной задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления. Каждому важно научиться анализировать, отличать гипотезу от факта, отчетливо выражать свои мысли, а с другой стороны - развить воображение и интуицию (пространственное представление, способность предвидеть результат и предугадать путь решения). Именно математика предоставляет благоприятные возможности для воспитания воли, трудолюбия, настойчивости в преодолении трудностей, упорства в достижении целей.
Сегодня математика как живая наука с многосторонними связями, оказывающая существенное влияние на развитие других наук и практики, является базой научно-технического прогресса и важной компонентой развития личности.
Одной из основных целей изучения математики является формирование и развитие мышления человека, прежде всего, абстрактного мышления, способности к абстрагированию и умения "работать" с абстрактными, "неосязаемыми" объектами.
В качестве одного из основополагающих принципов новой концепции в "математике для всех" на первый план выдвинута идея приоритета развивающей функции обучения математике. В соответствии с этим принципом центром методической системы обучения математике становится не изучение основ математической науки как таковой, а познание окружающего человека мира средствами математики и, как следствие, к динамичной адаптации человека к этому миру, к социализации личности.
Основной целью математического образования должно быть развитие умения математически осознанно исследовать явления реального мира.
Список литературы
1. Бантова М.А. Методика преподавания математики в начальных классах: Учебное пособие для учащихся школ.отд-ний пед.училищ по спец. №2001/Под ред. М.А. Бантовой, М.А. Бельтюкова – 3-е изд., испр.-М.:Просвещение, 1984.
2. Берлянд И.Е. Загадки и числа: воображаемые уроки в 1-м классе: пособие для учителя. – М.: Академия, 1996.
3. Вернье Ж. Ребенок, математика и реальность: проблемы преподавания математики в начальной школе. – М.: Ин-т психологии РАН, 1998.
4. Волкова С.И. Математика и конструирование в 1 классе: кн.для учителя. – М.: Просвещение, 1993.
5. Волкова С.И. Развитие познавательных способностей детей на уроках математики в 1 классе: пособие для учителя четырехлетн.нач.шк. – М.: Просвещение, 1994.
6. Волкова С.И. Развитие познавательных способностей детей на уроках математики во 2 классе: пособие для учителя четырехлетн.нач.шк. – М.: Просвещение, 1995.
7. Груденов Я.И. Психолого – дидактические основы методики обучения математики. – М.: Педагогика, 1987.