Энергетика химических процессов
Рефераты >> Биология >> Энергетика химических процессов

Вероятность существования различных соединений вещества (газ, кристаллическое, жидкое) можно описать как некоторое свойство и количественно выразить значением энтропии S. [Энтропия может измеряться в энтропийных единицах 1 э.е. = 1 кал/(моль×град.) = 4,1868 Дж/моль×град.] Энтропии веществ, как и энтальпии их образования, принято относить к определенным условиям. Обычно это стандартные условия. Энтропию в этом случае обозначают и называют стандартной.

В соответствии со степенью беспорядка энтропия вещества в газовом состоянии значительно выше, чем в жидком, а тем более – в кристаллическом. Например,

При данном агрегатном состоянии энтропия тем значительнее, чем больше атомов в молекуле. Например,

;

Чем больше твердость вещества, тем меньше его энтропия. Энтропия возрастает с увеличением степени дисперсности частиц вещества.

Для химических реакций в целом

изменение энтропии будет

.

Об изменении энтропии в химической реакции можно судить по изменению объема в ходе реакции:

, и ;

и .

Если в реакции участвуют только твердые и образуются только твердые вещества или число молей газообразного вещества не изменяется, то изменение энтропии в ходе ее очень незначительно.

В стандартных условиях энтропия простого вещества не равна нулю.

III закон термодинамики: энтропия чистых веществ, существующих в виде идеальных кристаллов при температуре 0 К, равна нулю.

Стремление системы к возрастанию энтропии называют энтропийным фактором. Этот фактор тем больше, чем выше температура. Количественно энтропийный фактор оценивается произведением Т·.

Стремление системы к понижению потенциальной энергии называют энтальпийным фактором. Количественно эта тенденция системы выражается через тепловой эффект процесса, то есть значением .

Самопроизвольно, то есть без затраты работы извне, система может переходить из менее устойчивого состояния в более устойчивое.

В химических процессах одновременно действуют две тенденции: стремление частиц объединиться за счет прочных связей в более сложные, что уменьшает энтальпию системы, и стремление частиц разъединяться, что увеличивает энтропию. Иными словами, проявляется действие двух прямо противоположных факторов – энтальпийного () и энтропийного (Т·). Суммарный эффект этих двух противоположных тенденций в процессах, протекающих при постоянных Т и р, отражает изменение энергии Гиббса DG (или изобарно–изотермического потенциала):

.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности или невозможности осуществления процесса. Условием принципиальной возможности являются неравенство:

(условие самопроизвольности).

Иными словами, самопроизвольно протекают реакции, если энергия Гиббса в исходном состоянии системы больше, чем в конечном.

Увеличение энергии Гиббса () свидетельствует о невозможности самопроизвольного осуществления процесса в данных условиях.

Если же , то система находится в состоянии химического равновесия.

В соответствии с уравнением самопроизвольному протеканию процесса способствует уменьшение энтальпии и увеличение энтропии системы, то есть когда и .

При других сочетаниях и возможность процесса определяют либо энтальпийный, либо энтропийный фактор.

Рассмотрим две следующие реакции:

1)

;

2)

.

Первая реакция экзотермическая, протекает с уменьшением объема. Возможность этой реакции () определяется действием энтальпийного фактора, которое перекрывает противодействие энтропийного фактора: .

Вторая реакция эндотермическая. Протекает с увеличением объема. Возможность этой реакции (), наоборот, определяется энтропийным фактором. При высокой температуре энтропийный фактор перекрывает энтальпийный фактор: . Реакция протекает самопроизвольно.

Согласно уравнению влияние температуры на определяется знаком и величиной .

Для реакции с (2C + O2 Þ 2CO) повышение температуры приводит к увеличению отрицательного значения . Для реакции с (2Hg + O2 Þ 2HgO) с повышением температуры отрицательное значение уменьшается; в этом случае высокотемпературный режим препятствует протеканию процесса. При соответствующей температуре приобретает положительное значение, и реакция должна протекать в обратном направлении. Если же при протекании процесса энтропия системы не изменяется , то значение реакции от температуры практически не зависит.


Страница: