Эволюция генома
Результатом амплификации небольших последовательностей ДНК в пределах функциональной единицы является удлинение гена, при котором из простых генов могут возникать более сложные. Это может происходить за счет тандемных дупликаций. Например, в генах, кодирующих вариабельные участки иммуноглобулинов мыши, последовательности из 600 п.н. образуются в результате 12 тандемных повторов исходной предковой последовательности в 48 п.н. Другим примером удлинения гена посредством тандемных дупликаций служит ген коллагена, который у курицы состоит из 34 000 т.н. и содержит больше 50 экзонов. Длина таких участков во всех случаях кратна девяти нуклеотидным парам. Эволюция этих экзонов, очевидно, шла от гипотетического исходного строительного блока длиной в 54 пары нуклеотидов.
Таким образом, амплификация нуклеотидных последовательностей, происходившая в процессе эволюции генома, обеспечивала не только его количественное увеличение, появление семейств генов, но и создавала предпосылки для накопления в них изменений, дивергенции генов, увеличения разнообразия контролируемых ими продуктов. [1]
2. Роль и мобильных генетических элементов горизонтального переноса генов в эволюции генома
2.1 Мобильные генетические элементы, их свойства
Мобильные генетические элементы (МГЭ, подвижные элементы, транспозируемые элементы, транспозоны и т.д.) повсеместно распространены в живой природе от плазмид, фагов и бактерий до высших животных и растений. Будучи нестабильными по своей локализации в геномах, они создают мощный источник изменчивости генов, систем их управления и геномов. Будучи сами последовательностями нуклеотидов, они тоже подвержены эволюции. Поэтому МГЭ выступают и как факторы эволюции содержащих их геномов, и как эволюционирущие объекты.
В настоящее время МГЭ найдены у бактерий (включая их фагов и плазмид), низших грибов, насекомых, растений, животных и многих других объектов. Число известных семейств МГЭ, вероятно превышает 100. У хорошо изученных объектов найдены многие десятки семейств МГЭ: например у дрозофилы их число, вероятно, достигает 50. Некоторые семейства относятся к умеренным повторам, имея десятки-сотни копий на геном, другие - к повторам высокой множественности (Alu у человека - 5—6 млн копий на геном). В сумме МГЭ различных семейств могут составлять значительную часть генома (до 10% у дрозофилы). МГЭ нестабильны, т.е. с определенной вероятностью способны к транспозициям и исключению из отдельных позиций генома (табл.1).
Таблица 1. Некоторые свойства МГЭ (Хесин, 1984; Fennegan,1985)
МГЭ |
Частота транспозиций на позицию, за поколение |
Количество копий МГЭ в геноме |
МГЭ |
Частота транспозиций на позицию, за поколение |
Количество копий МГЭ в геноме |
FB |
10-3 |
30 |
Te |
10-3 |
10 |
P |
10-2-10-5 |
30-50 |
MU |
10-1-10-3 |
10-60 |
Ty |
10-7 |
30-35 |
MDG |
10-2-10-5 |
10-50 |
МГЭ способны к воспроизведению в клетке либо через репликацию ДНК, либо через прямую и обратную транскрипцию (ретротранспозоны).В случаях, когда МГЭ не содержит генов, выполняющих клеточных функции, их часто считают "эгоистическими ДНК". Транспозиции обычно связаны с размножением копий МГЭ. В своей структуре МГЭ содержат гены транспозиции (ферментов-транспозаз - Тп-3, Тп-5 ) и др., ревертаз - ретропозоны (Ананьев, 1989). Поэтому фактически они являются отдельными репликонами. В некоторых случаях синтез транспозазы репрессируется при избыточной ее концентрации по механизму отрицательной обратной связи (Тп-3), Р-фактор дрозофилы). МГЭ содержат также разнообразные функциональные сайты - знаки пунктуации и управления (промоторы, терминаторы, операторы, репликаторы, энхансеры, регуляторные сайты теплового шока), которые существенны для окружающих участков генома. Инсерции МГЭ в кодирующие зоны генов приводят к нарушению или резкому изменению их функций. Это связано с прямым нарушением генов и с влиянием знаков пунктуации (промоторов, терминаторов и др.,) на процессы считывания. Доля таких мутаций особенно велика у прокариот, которые имеют высокую плотность кодирования информации в геноме. Инсерции МГЭ в некодирующие области (спейсеры, интроны, фланговые участки др.) приводят к более "мягким" последствиям: усилению или ослаблению активности близлежащих генов, изменению их регуляции и т.п. Такие последствия преобладают у высших эукариот, у которых кодирующая часть генома составляет ~3-5%. Показано также, что среди видимых мутаций у дрозофилы и других объектов наиболее значительную долю составляют не замены нуклеотидов, а именно инсерции МГЭ (табл. 2).
Таблица 2 Доля спонтанных мутаций, вызванных инсерциями МГЭ, в различных локусах Drosophilla melanogaster (Sankaranarayanan, 1988; McDonald, 1989)
Локус |
Доля инсерций МГЭ среди видимых спонтанных мутаций |
МГЭ (число мутаций) |
V (vemillion) |
4/5 |
mg-2-(3), BI04 (1) |
ct (cut) |
28/28 |
mdg-4 (27), copia (1) |
ry (rosy) |
3/5 |
calypso (1), BI04 (1) |
f (forked) |
¾ |
mdg-4 (3) |
su (s) |
5/7 |
mdg-4 (5) |
Bx (Beadex) |
4/4 |
mdg-4 (2) ,BI04 (2) |
bx (bithorax) |
8/9 |
mdg-4 (7) ,BI04 (2) |
sc (scute) |
2/2 |
mdg-4 (2) |
Antr (Antennapedia) |
2/5 |
BI04 (2) |