Что такое ге. Генетическая точка зрения
Прямого доказательства того, что ген действительно детерминирует структуру белка, пришлось ждать до 1957 г., когда Ингрем (Ingram) показал, что серповидно-клеточная анемия, наследуемая как моногенный признак, обусловлена изменением аминокислотного состава белка гемоглобина.
Некоторые белки состоят более чем из одной субъединицы. Их называют мультимерными. Если субъединицы белка одинаковы, то белок гомомультимер, детерминируемый одним геном. Если же субъединицы белка различны, то белок называют гетеромультимером. Гемоглобин служит примером белка, состоящего более чем из одного типа полипептидных субъединиц. Группа гема связана с двумя ос-субъединицами и двумя в-субъединицами. Каждый тип субъединиц - иная полипептидная цепь и продукт другого гена. Таким образом, функция гемоглобина может быть подавлена мутацией в любом из генов, кодирующих либо б-, либо в-субъединицу. В связи с этими данными гипотеза "один ген - один фермент" была сформулирована в более общем виде, применительно к любому гетеромультимерному белку. Теперь она получила более точное выражение: "один ген - одна полипептидная цепь".
Новое определение: цистрон
Если рецессивная мутация-это любое изменение в гене, препятствующее образованию активного белка, то в каждом гене может произойти множество таких мутаций, так как многие аминокислотные замены могут существенно изменить структуру белка и нарушить его функцию.
Но каким образом отличить множественные аллели от мутаций в генах, тесно сцепленных и затрагивающих один и тот же фенотипический признак?
Но если мутации лежат в разных генах, родительские генотипы можно обозначить как (т, +) и (+ т2), где каждый имеет аллель дикого типа одного гена и мутантный аллель - другого гена. (Знак плюс используют для обозначения дикого типа) Тогда у гетерозиготы будет генотип
в котором оба родителя вместе обеспечивают по "дикой" копии каждого гена. Такая гетерозигота имеет дикий фенотип, а о генах говорят, что они комплементируют друг друга.
Рассмотрим более детально комплементационный тест с помощью рис.14, на котором представлены исследуемые генотипы в двух возможных конфигурациях. При конфигурации обе мутации находятся в одной и той же хромосоме. При трансконфигурации они расположены в противоположных хромосомах.
Сначала рассмотрим пример, когда мутации лежат в одном и том же гене. Транс-конфигурация соответствует тесту, который мы только что описали. Обе копии гена в этом случае мутантные. При i/uc-конфигурации, однако, один геном производит дважды мутантный белок, а другой-белок дикого типа. Таким образом, если исследуемые мутации лежат в одном гене, фенотип гетерозиготы определяется их взаимным расположением: при транс-конфигурации фенотип - мутантный, а при цис-конфигурации - дикого типа. И наоборот, если мутации лежат в разных генах, их взаимное расположение значения не имеет. Для каждого гена в обеих конфигурациях есть по одной мутантной копии и по копии дикого типа.
Из этого следует, что при цис-конфигурации результат не зависит в разных генах. Дмс-вариант используют в основном как "формальный контроль для выявления функции дикого типа, по отношению к которому судят о наличии или отсутствии комплементации при транс-конфигурации).
Если две мутации не комплементируют при трансконфигурации, то делается вывод, что обе они нарушают одну и ту же функцию. Такие мутации относят к одной группе комплементации. При анализе r/7-области фага Т4 все мутации распределились на две группы комплементации; в каждой из этих групп мутантные сайты расположились в линейном порядке. Внутри группы rllA и внутри группы rllB никакие две мутации не комплементировали друг друга, но любая мутация rllA была комплементарна любой мутации rllB. Эти данные говорят о том, что r/7-мутации соответствуют двум соседним группам комплементации, затрагивающим одну и ту же фенотипическую функцию.
Однако иногда наблюдается исключение из правила, что комплементировать могут только различные гены, - это в том случае, когда ген кодирует полипептид, представляющий собой субъединицу гомомультимерного белка. В клетке дикого типа активный белок состоит из нескольких идентичных субъединиц. В клетке, содержащей два различных мутантных аллеля, их продукты могут смешиваться, образуя мультимерные белки из субъединиц обоих типов. Иногда происходит взаимная компенсация мутаций, и в таком случае белок со смешанными субъединицами может быть активен, тогда как белки, содержащие только по одному типу мутантных субъединиц, неактивны. Такое явление называют межаллельной комплементацией.
Подводя итог, можно сказать, что описанный генетический анализ привел к представлению о гене как о серии последовательных сайтов в геноме. Предполагалось, что эта серия сайтов участвует в образовании единичного транс-активного продукта, т.е. полипептидной цепи. Но вскоре мы увидим, что это определение стало уже недостаточно точным.
Замечания, касающиеся терминологии
Прежде чем мы перейдем к молекулярному анализу гена, рассмотрим терминологию, используемую для описания генетических локусов и детерминируемых ими признаков.
Под термином генетический маркер часто подразумевается тот или иной ген, используемый для картирования или для идентификации конкретного локуса. Можно сказать, например, что клетка несет определенный набор маркеров, т.е. аллелей.
Буквенные символы генотипа всегда набирают курсивом; фенотип обозначают с помощью тех же символов, но набранных прямым шрифтом. Под термином "дикий тип" подразумевают нормальную активную форму гена, или нормальный фенотип. Для обозначения "дикого типа" можно использовать также знак плюс над названием локуса. Иногда для обозначения аллеля дикого типа используют знак " +" сам по себе (без символа соответствующего локуса), а локус указывают только для мутантного аллеля. Полностью дефектную форму гена (или отсутствие конкретного фенотипического признака) иногда обозначают с помощью знака минус в верхнем индексе. При описании множества мутантных аллелей, чтобы различать их друг от друга, вводят дополнительные индексы. Например, локус w (белые глаза) у D. melanogaster можно обозначить w + (красный цвет глаз) в случае аллеля дикого типа, w'-в случае мутантного аллеля (глаза цвета слоновой кости-ivory), wa-B случае другого мутантного аллеля (глаза абрикосового цвета-apricot) и т.д.
Для обозначения генов пользуются сокращениями, причем для обозначения различных генетических систем используются разные обозначения. Для большинства эукариотических систем нет ограничений в используемой форме сокращения. Согласно общему правилу, сокращение, принятое для обозначения доминантного аллеля, пишется с заглавной буквы (для дрожжей символ целиком пишут заглавными буквами), обозначения рецессивных аллелей - строчными.
При описании бактерий используют стандартную трехбуквенную номенклатуру. Одно и то же со