Физиология растений
выяснения составляющих водного баланса растений и разработки приемов более продуктивного использования осадков, оросительной воды, внедрения капельного и импульсного орошения, автоматизированных оросительных систем;
раскрытия природы механизмов устойчивости растений к неблагоприятным факторам внешней среды, приемов, позволяющих растению в экстремальных условиях не только выжить, но и обеспечить достаточно высокую продуктивность (приемы повышения морозоустойчивости, холодостойкости, солеустойчивости и др.);
физиологии иммунитета растений, механизмов и условий, повышающих устойчивость сельскохозяйственных растений к болезням и вредителям;
познания регуляторных систем и механизмов, обеспечивающих упорядоченность и регуляцию физиологических процессов, способность растений к адаптации в широком диапазоне меняющихся условий среды;
использования фитогормонов и синтетических регуляторов роста, позволяющих направленно влиять на ход формирования урожая и его качество в технологиях сельскохозяйственных культур;
использования специальных методов и технических средств диагностики функционального состояния растений в полевых условиях, в селекционном процессе, в закрытом грунте для успешного «диалога» с ним с целью оптимизации условий выращивания, борьбы с болезнями и вредителями, оценки засухо-, -морозо-, солеустойчивости (показатели газообмена, биоэлектрические потенциалы, градиенты температур, скорость водного тока и др.);
теоретических физиологических и биохимических основ хранения урожая, снижения его потерь с использованием инертных газов, полупроницаемых мембран, консервантов и др.;
изучения потребности оптимальных режимов и способов облучения отдельных видов и сортов растений в сооружениях защищенного грунта в овощеводстве, в селекционном процессе;
изучения процессов и механизмов распределения ассимилянтов в онтогенезе растений в целях направленного формирования урожаев.
Как фундаментальная область знаний физиология растений служит также теоретической основой биотехнологии и биоинженерии растений.
Способность растений переносить недостаточное влагообеспечение является комплексным свойством. Она определяется возможностью растений отсрочить опасное уменьшение оводненности протоплазмы (избегание высыхания) и способностью протоплазмы переносить обезвоживание без повреждения (выносливостью). Избегание высыхания достигается благодаря морфологической, анатомической приспособленности растений к сохранению оптимальной оводненности тканей при сухости воздуха и почвы.
Протоплазма большинства растений чрезвычайно чувствительна к обезвоживанию. Клетки надземных органов мезофитов, к которым относится большинство сельскохозяйственных культур, погибают, если их несколько часов выдерживать в воздухе с относительной влажностью 92—96 %, что соответствует депрессии водного потенциала 5,5—11 МПа. Корни еще более чувствительны. Водный дефицит приводит к прогрессирующему обезвоживанию протоплазмы, что вызывает нарушение физиологических функций, их прекращение и повреждение протоплазматических структур. Снижение содержания воды в клетке ниже оптимального уровня, вызывающее нарушения метаболизма, называется водным стрессом.
Одним из показателей водного стресса является депрессия водного потенциала. Для типичной клетки листа мезофитов с водным потенциалом примерно 2 МПа установлены три степени водного стресса: мягкий стресс — снижение водного потенциала не более чем на 1 МПа; умеренный (средний) стресс — снижение водного потенциала на 1,2—1,5 МПа; суровый стресс — снижение водного потенциала более чем на 1,5 МПа. Мягкий стресс соответствует небольшой потере тургора, тогда как средний связан с подвяданием листьев, а суровый стресс — с завяданием растений.
Наибольшей чувствительностью к водному стрессу характеризуются ростовые процессы. Это объясняется, во-первых, тем, что в основе растяжения клеток лежат тургорные явления, а утрата тургора во время роста клеток ведет к мелкоклеточности, во-вторых, рост тесным образом связан с нуклеиновым и белковым обменом. Сложность этих процессов приводит к их большой уязвимости при всякого рода неблагоприятных воздействиях, в том числе и водном стрессе.
Влияние водного дефицита на метаболические процессы в значительной мере зависит от длительности его действия. При устойчивом завядании растений увеличивается скорость распада РНК, белков и одновременно возрастает количество небелковых азотсодержащих соединений. Влияние водного дефицита на углеводный обмен листа выражается вначале в снижении моно- и дисахаридов из-за снижения интенсивности фотосинтеза. Затем количество моносахаридов может возрастать в результате гидролиза полисахаридов. При длительном водном дефиците наблюдается уменьшение количества всех форм Сахаров. Детоксикация избытка образующегося при протеолизе аммиака происходит с участием органических кислот, количество которых возрастает в тканях при водном дефиците. Процессы восстановления идут успешно, если не повреждены при недостатке воды генетические системы клеток. Защита ДНК состоит в частичном выведении молекул из активного состояния с помощью ядерных белков и, возможно, с участием специальных стрессовых белков. Поэтому изменения количества ДНК обнаруживаются лишь при сильной длительной засухе.