Симметрия природы и законы сохранения
Рефераты >> Биология >> Симметрия природы и законы сохранения

В основе определения симметрии лежит понятие равенства при преобразовании. Однако физически (и математически) объект может быть равен себе по одним признакам и не равен по другим. Например, распределение ядер и электронов в крис­талле антиферромагнетика можно описать с помощью обычной пространственной симметрии, но если учесть распределение в нем магнитных моментов, то обычной, классической симмет­рии уже недостаточно. К подобного рода обобщениям симмет­рии относятся антисимметрия и цветная симметрия. В антисимметрии в дополнение к трем пространственным пере­менным добавляется четвертая ±1, что можно истолковать как изменение знака (антиравна). Это так называемая обобщенная симметрия, используемая в описании, например, магнитных структур.

Другое обобщение симметрии — симметрия подобия — бу­дет определено, когда равенство частей фигуры заменяется их подобием , криволинейная симметрия, статисти­ческая симметрия, вводимая при описании структуры разупорядоченных кристаллов, твердых растворов, жидких кристаллов и т. п.

В физике элементарных частиц симметрия широко исполь­зуется в связи с идеей изотопической инвариантности, предло­женной В. Гейзенбергом для описания взаимодействий протона и нейтрона. Считается, что изотопическая симметрия описы­вает точное свойство инвариантности сильных взаимодействий, хотя получаемые из нее соотношения в действительности все­гда нарушаются на уровне точности порядка нескольких про­центов.

Унитарная симметрия в качестве обобщения изотопичес­кой инвариантности впервые появилась в связи с моделью сим­метрии Сакаты, в которой все адроны считались составленными из трех основных электрических частиц — протона, нейтрона и d-гиперона.

Унитарная симметрия осуществляется с худшей точностью, чем изотопическая, но это не мешает получать ряд интересных соотношения между физическими величинами (например, фор­мула масс Гелл-Манна—Окубо, предсказавшая существование и массу Q-гиперона).

Еще одно приложение группы симметрии к физике адронов — это цветовая симметрия. Согласно определению цвето­вой симметрии каждый кварк имеет три возможных состояния, различающихся по квантовому числу, названному цветом, а пре­образование цветового состояния можно производить незави­симо в разных пространственно-временных точках. С этим связано существование глюонного поля, имеющего восемь цве­товых состояний. Взаимодействие кварков с этим полем явля­ется микроскопической основой сильных взаимодействий. Оно описывается квантовой хромодинамикой — калибровочной квантовой теорией поля типа Янга—Миллса. Кроме того, цве­товая симметрия не нарушается никакими известными в насто­ящее время взаимодействиями, а согласно теореме Нетер следует, что в стандартной модели сильного и электрослабого взаимодействий возникает сохранение барионного и лептонно-го чисел.

2. Законы сохранения

Количество законов Природы велико, но они неравнозначны по сфере применения.

Наиболее многочисленны законы, описывающие электричес­кие явления, сформулированные на основе обобщения экспе­риментальных данных. Часто они носят приближенный характер, и область их применения достаточно узка. Например, закон Гука — для области небольших деформаций, то есть до дости­жения предела текучести твердого тела, иначе до границы, пос­ле которой деформации становятся необратимыми после снятия нагрузки. Закон Гука выражает внешний наблюдаемый эффект. Внутренняя же природа явления в том, что атомы и молекулы состоят из электрически заряженных частиц, силы притяжения и отталкивания в которых уравновешены. Деформация наруша­ет их внутренние электрическое равновесие, которое после сня­тия нагрузки восстанавливается. Таким образом, силы упругости по сути электромагнитные силы или по существу чисто элект­рический эффект; закон валентности при образовании химичес­ких соединений определяет создание общих электронных пар, то есть внутренне это тоже электрический эффект.

Однако для описания внешнего поведения системы вполне можно не прибегать к сложным уравнениям электродинамики. Аналогично в термодинамике или химических законах не рас­сматривают квантовые внутренние эффекты, объясняющие по­ведение термодинамической или химической системы изнутри.

Такие законы являются частными.

Если же мы абстрагируемся от внешнего эффекта и раскро­ем его внутренний механизм, то целый ряд на первый взгляд не связанных явлений объединится в классы или системы. Эти системы явлений можно будет описать единым законом, назы­ваемым фундаментальным.

В классической механике их четыре: законы Ньютона и все­мирного тяготения. Но и они действуют лишь в области макро­мира. Так, для микрочастиц невозможно указать точно значения ускорений и сил, то есть теряется сам смысл понятий, исполь­зуемых в формулировке закона.

Другое дело законы сохранения. Они не теряют своего смыс­ла при замене одной системы на другую, то есть базируются на эвристическом принципе, позволяющем независимо от накоп­ленного опыта отбирать более совершенные законы. Они могут и не давать полного описания явлений, а лишь накладывать оп­ределенные запреты на их реализацию для построения новых теорий. Тогда их называют принципами.

Если и дальше обобщать фундаментальные законы, еще глуб­же уходя во внутреннюю структуру: от атома к элементарным частицам, а затем и к их структуре, и на базе этого строить тео­рии и выводить законы, то последние и будут называться уни­версальными. Например, теория Великого объединения взаимодействий пытается объединить четыре известных взаи­модействия, то есть свести их к одной Природе. Для таких зако­нов характерен элемент симметрии. В первом приближении под симметрией понимают допущение любых преобразований сис­темы, а структура математической формулировки закона при этом не меняется. Чтобы понять, что такое симметрия физичес­кого закона, нужно дать этому определение в математических терминах. Для исследования симметрии предметов необходи­мо рассмотреть множество всех перемещений пространства и выделить те из них, при которых данный предмет отображает­ся сам на себя. Множество таких преобразований называется группой симметрии. Например, прямоугольник. Его симметрич­ность выявляется при преобразовании пространства, два зар-кальных отражения относительно двух осей симметрии, поворот плоскости на 180° и тождественное преобразование плоскости оставляют фигуру неизменной. Группа его симметрии содер­жит четыре элемента.

Можно расширить понятие симметрии и назвать группой симметрии такие преобразования пространства и времени, при которых форма записи уравнений или комбинации физических величин остаются неизменными. Именно в этом смысле гово­рят о симметрии физических законов.

Законы сохранения распространяются на весь диапазон фи­зических явлений: от микро- до макротел.

Закон — внутренняя, существенная и устойчивая связь яв­лений, обусловливающая их упорядоченное изменение.

Закономерность — совокупность взаимосвязанных законов, обеспечивающих устойчивую тенденцию или направленность в изменениях системы.


Страница: