Симметрия природы и законы сохранения
СОДЕРЖАНИЕ:
Введение
1. Симметрия природы
2. Законы сохранения
Заключение
Литература
ВВЕДЕНИЕ:
Важнейшие достижения в физике элементарных частиц связаны с симметрией относительно преобразований некоторых параметров, характеризующих внутренние свойства частиц.
Так, в последние годы получили развитие суперсимметрические модели, обладающие симметрией нового типа, связывающие между собой фермионы и бозоны и постулирующие, что у каждой обычной частицы имеется "суперпартнер" с аналогичными свойствами (за исключением спина — вращения элементарной частицы или античастицы вокруг собственной оси, обусловливающего ее электромагнитное поле). Например, электроны, кварки, лептоны имеют суперпартнеров — сэлектроны, скварки. слептоны. Но эта теория еще не подтверждена экспериментом.
Существует принцип симметрии Кюри: если условия, однозначно определяющие какой-либо эффект, обладают некоторой симметрией, то результат их действий не нарушит ее. Поэтому, формально, все неравновесные процессы разделяют на скалярные (химические реакции), векторные (теплопроводность, диффузия) и тензорные (вязкое трение). В соответствии с принципом симметрии величины разных размерностей не могут быть связаны друг с другом. Так, скалярная величина не может вызвать векторную.
Суть методологического значения понятия симметрии наиболее ярко раскрывает высказывание Дж. Ньюмена (1903-1957): "Симметрия устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, ., строением пространства, рисунками ваз, квантовой физикой, . , лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, ., равновесными конфигурациями кристаллов, ., теорией относительности, .".
В широком понимании, симметричное означает хорошее соотношение пропорций, а симметрия — тот вид согласованности отдельных частей, который объединяет их в целое.
Симметрия имеет два значения:
— весьма пропорциональное, сбалансированное, способ согласования многих частей, объединяющий их в целое (следствие симметрии — законы сохранения классической физики);
- равновесие (по Аристотелю, это состояние характеризуется соотношением крайностей).
1. Симметрия природы
Начало стройной симметрии заложила физика в теории кристаллов, что зафиксировано в работах И. Ф. Гесселя (1796 -1872) в 1830 г., Л. В. Гадолина (1828 - 1892) в 1867г., А. Шенфлиса (1853 - 1928) в 1890 г. Первоначально речь шла о геометрических преобразованиях системы: ее переносах и поворотах.
Фундаментальность значения дальнейшего развития учения о симметрии в том, что каждому непрерывному преобразованию отвечает соответствующий закон сохранения, который в последующем был распространен с механики и на квантовую физику.
Так, основной принцип современных калибровочных теорий фундаментальных взаимодействий Природы состоит в том, что переносчиками взаимодействий выступают определенные сохраняющиеся величины, обладающие симметрией, определяющие динамику системы и тем самым позволяющие надеяться на осуществление создания теории "Великого объединения взаимодействий", включая теории гравитации.
Основным типам симметрии (С, Р, Т) были даны определения в предыдущем разделе, но симметрию С рассмотрим еще раз. Сильные электромагнитные взаимодействия инвариантны относительно операции зарядового сопряжения: замена всех частиц на соответствующие античастицы. Эта симметрия не является пространственной и рассматривается особо в связи с тем, что характеризует симметрию необычного вида — зарядовой четности, в которой нейтральная частица переходит сама в себя при зарядовой сопряженности.
Благодаря существованию СРТ- и СР-симметрий как для сильных, так и электрослабых взаимодействий выполняется симметрия относительно обращения времени, то есть любому движению под действием этих сил соответствует в Природе симметричное движение, при котором система проходит в обратном порядке все состояния что и в первоначальном движении, но с изменением на противоположные направлениями скоростей частиц, спинами, магнитными полями. Из Т-симметрии следуют соотношения между прямыми и обратными реакциями.
Именно симметрия, относительно перестановки одинаковых частиц, обосновывает принцип неразличимости одинаковых частиц (см. разд. 3.9), то есть приводит к полной их тождественности. Связь спина и статистики является следствием релятивистсюй инвариантности теории и тесно связана с СРТ-теоремой. Под внутренними симметриями понимают симметрии между частицами и полями с различными квантовыми числами. При этом различают глобальные и локальные симметрии.
Симметрия называется глобальной, если параметр преобразования не зависит от пространственно-временных координат точки, в которой рассматривается поле. Ее примером является инвариантность лагранжиана относительно калиброванных преобразований входящих в него полей. Эта инвариантность приводит к аддитивному закону сохранения заряда, причем не только электрического, но и барионного, лептонного, странности и т. д.
Локальные симметрии существуют, когда параметры преобразований для глобальных симметрии можно рассматривать как произвольные функции пространственно-временных координат. Они позволяют построить теорию, в которой сохраняющиеся величины (заряды) выступают в качестве источников особых калибровочных полей, переносящих взаимодействие между частицами, обладающими соответствующими зарядами.
Динамическая симметрия системы возникает, когда рассматривается преобразование, включающее переходы между состояниями симметрии с различными энергиями.
Наиболее разработана теория симметрии кристаллов. В ней под симметрией понимается их свойство совмещаться с собой при поворотах, отражениях, параллельных переносах либо при части или комбинации этих операций.
Симметрия внешней формы (огранки) кристалла определяется симметрией его атомного, дискретного трехмерно-периодического строения, которая обусловливает также и симметрию физических свойств кристалла.
Симметрия кристаллов проявляется не только в их структуре и свойствах в реальном трехмерном пространстве, но также и при описании энергетического спектра электронов кристалла (зонная теория), при анализе процессов дифракции: рентгеновских лучей нейтронов и электронов в кристаллах с использованием обратного пространства (обратная решетка) и т. п.
При образовании симметрии пространство не деформируется, а преобразуется как жесткое целое. Такие преобразования называют ортогональными, или изотермическими. Совокупность операций симметрии данного кристалла образует группу симметрии в смысле математической теории групп.
Зная группу симметрии кристаллов, можно указать возможность наличия или отсутствия в ней некоторых физических свойств, чем и занимается кристаллофизика.