Движение электронов - отклоняющие системы ЭЛТРефераты >> Радиоэлектроника >> Движение электронов - отклоняющие системы ЭЛТ
8. Классификация и маркировка
В настоящее время применяются два типа магнитных отклоняющих систем - с последовательно складывающимися и с параллельно складывающимися магнитными потоками.
Системы с последовательно складывающимися потоками более экономичны, так как в этом случае для отклонения луча используется сравнительно большая часть запасаемой в катушках магнитной энергии. В системах с параллельно складывающимися потоками область отклонения пронизывается только полем рассеяния, а большая часть энергии, запасаемая внутри катушек, не используется для отклонения луча. Однако при параллельном сложении потоков сравнительно проще получить примерно однородное поле в большей области.
Магнитные отклоняющие системы часто классифицируют также по конструктивным признакам — рассматривают системы без магнитопроводов, с внешними магнитопроводами и с внутренними магнитопроводами (тороидального типа). Для современных кинескопов с большими углами отклонения луча разработаны комбинированные системы—одна пара катушек имеет внутренний магнитопровод, одновременно являющийся внешним магнитопроводом второй пары катушек. Описаны также системы статорного типа, по конструкции аналогичные статору электродвигателя. Такие системы высокоэффективны, но в них из-за наличия выраженных зубцов пластин магнитопровода при больших углах отклонения сильно сказывается неоднородность поля. Кроме того, такие системы сложны в изготовлении. Системы статорного типа вследствие отмеченных недостатков не получили распространения.
9. Сведения о конкретных приборах
а) Запоминающий электронно-лучевой прибор ( потенциалоскоп )
Электронно-лучевой прибор, обладающий способностью сохранять в течение определенного времени записаные на его мишени электрические сигналы и выдавать накопленную информацию, либо в форме изображения на экране. Служит для записи и многократного воспроизведения сигналов (с целью их сравнения ), радиолокационного выделения ( селекции ) движущихся объектов, преобразования радиолокационных сигналов в телевизионные …
В зависимости от типа выходного сигнала различают запоминающие электронно-лучевые приборы с видимым изображением и запоминающие электронно-лучевые приборы со съёмом электрического сигнала. Запоминающие электронно-лучевые приборы с видимым изображением ( рис.1 ) по характеру изображения делятся на полутоновые и бистабильные ( создающие изображение без полутонов ).
По совокупности характерных признаков современные передающие электронно-лучевые приборы разделяются на следующие основные классы :
1.Суперортиконы- распространённый класс, включающий собственно суперортиконы, изоконы и антиизоконы; работают на внешнем фотоэфекте. Для них характерно наличие секции переноса изображения, двусторонней мишени и вывода сигнала с помощью обратного луча.
2.Видиконы ( в том числе сатиконы, ньювиконы, плюмбиконы, кремнеконы) объединяют передающие электронно-лучевые приборы с накоплением заряда, действие которых основано на внутренем фотоэффекте. В таких передающих электронно-лучевых приборах светочувствительный элемент и элемент, несущий потенциальный рельеф, совмещены в фотопроводящей мишени. Сигнал снимается с сигнального элемента (сигнальной пластины), входящего в состав мишени.
3.Супервидиконы, включающие секоны и суперкремнеконы, отличаются от видиконов наличием секции переноса изображения, а следовательно, разделением функций входного фотокатода и носителя потенциального рельефа (высокопористой мишени с вторично-электронной проводимостью в секонах или кремнеевой мозаичной мишени в суперкремнеконах).
4.Пировидиконы отличаются от видиконов мишенью, физические свойства которой изменяются в зависимости от температуры, сообщаемой мишени тепловым излучением от различных частей пердаваемого изображения.
5.Диссекторы представляют собой передающие электронно-лучевые приборы прямого действия с внешним фотоэффектом, отличаются от передающих электронно-лучевых приборов других типов развёрткой электронных потоков с фотокатода в секции переноса изображения с последующим усилением их с помощью вторично-электронного умножителя.
Уровень развития передающих электронно-лучевых приборов определяет возможности существующих телевизионных систем, а также спектр задач, решаемых телевизионными средствами. Так, создание иконоскопов и супериконоскопов позволило начать телевизионное вещание во второй половине 30-х годов. Суперортиконы и видиконы открыли эру промышленного телевидения. Плюмбиконы широкому внедрению систем цветного телевидения. Соединение суперортиконов с усилителями яркости изображения оказалось перспективным для астрономических и других исследований. Супервидиконы нашли применение в космической аппаратуре. В настоящее время (начало 90-х гг.) в связи с разработкой вещательной системы цветного телевидения высокой чёткости одной из важнейших проблем развития передающих электронно-лучевых приборов является создание приборов с разрешающей способностью 2000 линий и более.
10. Применение приборов
Уровень развития передающих электронно-лучевых приборов определяет возможности существующих телевизионных систем, а также спектр задач, решаемых телевизионными средствами. Так, создание иконоскопов и супериконоскопов позволило начать телевизионное вещание во второй половине 30-х годов. Суперортиконы и видиконы открыли эру промышленного телевидения. Плюмбиконы широкому внедрению систем цветного телевидения. Соединение суперортиконов с усилителями яркости изображения оказалось перспективным для астрономических и других исследований. Супервидиконы нашли применение в космической аппаратуре. В настоящее время в связи с разработкой вещательной системы цветного телевидения высокой чёткости одной из важнейших проблем развития передающих электронно-лучевых приборов является создание приборов с разрешающей способностью 2000 линий и более.
11. Перспективы развития приборов
Достоинства и недостатки электростатической и магнитной систем отклонения в ЭлЛТ. Отклонение луча магнитным полем в меньшей степени зависит от скорости электрона, чем для электростатической системы отклонения. Поэтому магнитная отклоняющая система находит применение в трубках с высоким анодным потенциалом, необходимым для получения большой яркости свечения экрана.
К недостаткам магнитных отклоняющих систем следует отнести невозможность их использования при отклоняющих напряжениях с частотой более 10 – 20 кГц, в то время как обычные трубки с электростатическим отклонением имеют верхний частотный предел порядка десятков мегагерц и больше. Кроме того, потребление магнитными отклоняющими катушками значительного тока требует применения мощных источников питания.
Достоинством магнитной отклоняющей системы является ее внешнее относительно электронно-лучевой трубки расположение, что позволяет применять вращающиеся вокруг оси трубки отклоняющие системы.