Рестрикционное картирование
Рефераты >> Биология >> Рестрикционное картирование

Введение

Картирование генома – быстро развивающаяся область исследований. Для ученых, избравших ее своей специальностью, это одновременно и хорошо, и плохо. Хорошо, поскольку это освобождает нас от необходимости соблюдать узкую направленность в своей работе, а плохо, поскольку мы пока незнаем, какой способ картирования дает наиболее реальную картину структуры генома и, следовательно, какие данные больше соответствуют истине. Оглядываясь на путь, пройденный нами в исследованиях по картированию, мы с сожалением должны констатировать: если бы пришлось начинать все сначала, мы вряд ли бы двигались в том же направлении.

Картирование генома подразумевает создание систематизированной библиотеки клонов, которая полностью представляет геном и содержит набор генетических маркеров, достаточный, чтобы строить физическую и генетическую карты. По ходу исследований мы постепенно приближаемся к истинной структуре. В идеале карты, полученные разными способами, должны быть идентичными. Изучение структуры генома не требует обязательного построения рестрикционной карты, однако некоторые способы картирования автоматически приводят к ее получению.

Цель картирования – облегчать процедуру клонирования известных генов и способствовать поиску в геноме интересующих клонов. Наличие карты позволяет легко соотносить друг с другом результаты разрозненных экспериментов по локализации в геноме различных клонов.

1. Стратегия

1.1 Сравнение клонов

В любом методе картирования генома центральной процедурой является сравнение клонов, позволяющее выявить частичные перекрывания. Наиболее просто перекрывания можно обнаружить с помощью гибридизации. Однако саму по себе гибридизацию нельзя считать удовлетворительным критерием взаимного соответствия клонов, так как имеющиеся в геноме, особенно у эукариот, диспергированные повторы могут давать ложноположительные ответы. Кроме того, прямое сравнение пар – процедура слишком трудоемкая, чтобы использовать ее для реализации программы, требующей сопоставления большого количества клонов. Более приемлемым представляется такой подход, который позволяет постепенно накапливать информацию о каждом клоне, а затем анализировать ее.

Большинство методов картирования в настоящее время основано на обработке ДНК генома одной или несколькими рестриктазами с последующим определением размеров образующихся фрагментов. Для этой цели предложен ряд методик.

Вначале мы бы хотели коснуться приема, использованного нами при анализе структуры генома нематоды Caenorhabdltis elegans. Он получил название «метод отпечатков пальцев» и подразумевает использование неупорядоченных и неполных наборов фрагментов, которые являются характеристикой клона, хотя и описывают его неполностью: фрагменты разделяют с помощью электрофореза в тонкослойном полиакриламидном геле.

1.2 Векторы

Стратегия картирования основывается на анализе случайно отобранных клонов. Совершенно ясно поэтому, что при картировании необходимо иметь как можно более обширную библиотеку клонов. Желательно также, чтобы размер клонированных вставок позволял их использовать в дальнейшем в биохимической генетике.

Первоначально мы выбрали для экспериментов космиды из-за сравнительно крупных размеров акцептируемой ДНК. С тех пор как более 10 лет назад Коллинс и Хон ввели в практику первый космидный вектор, было сконструировано большое количество новых векторов такого рода. Среди них используемый в картировании Caenorhabdltis, векторы серии Lorist, разработанные Литлом и Кроссом. Последние два имеют интересные структурные особенности, в частности наличие постоянного числа копий и, что еще более важно для описываемых здесь методов, присутствие элементов, увеличивающих представительность клональных библиотек: терминаторов транскрипции, предотвращающих влияние векторных генов, возможное при транскрипции клонированных вставок. Эти векторы содержат также промоторные последовательности фагов SP6 и Т7, облегчающие считывание. Методы конструирования, расщепления и дефосфорилирования векторных ДНК описаны Маниатисом.

Я2001 – единственный Я-вектор, использованный при картировании Caenorhabditis. И хотя в этом случае вставка составляет только половину последовательности космидной вставки, клоны оказываются более стабильными. Наконец, для некоторых областей генома отмечено более полное представительство именно в А-библиотеке.

Недавно был получен вектор, с помощью которого можно конструировать искусственные дрожжевые хромосомы. Это открытие сулит переворот в картировании: появляется возможность клонировать фрагменты ДНК, на порядок превышающие по размерам космидные вставки. Вероятно также, что соответствующие геномные библиотеки окажутся более представительными. Метод «отпечатков пальцев» пока пригоден лишь для маленьких YAC, но, используя гибридизацию, можно будет присоединять к космидам и большие фрагменты. Скорее всего, в будущем для картирования генома будет применяться техника подбора пар, специально разработанная для YAC.

1.3 Селекция клонов

Если создан банк клонов и разработана техника подбора пар, остается только выбрать стратегию селекции для дальнейшего анализа клонов. Для небольших геномов более эффективно первоначально подбирать клоны случайным образом. Затем, когда эта возможность исчерпывается, необходимо заполнить оставшиеся пробелы в карте с помощью гибридизацион-ных или других методов.

2. Экспериментальная часть

Поскольку именно космидная библиотека является основой нашей работы, мы решили подробно описать здесь ее создание.

Выделение геномной ДНК

Представленный здесь пример – экстракция ДНК из нематод. Этот метод универсален и включает минимум необходимых манипуляций.

Червей выращивают в жидкой питательной среде, отмывают, быстро замораживают и хранят в жидком азоте, в аликвотах по 1 г.

1. Размельчите одну аликвоту до порошкообразного состояния в ступке, охлажденной в жидком азоте, затем осторожно смешайте ее с 30 мл раствора, содержащего 100 мМ этилен-диаминотетрауксусной кислоты, рН 8,0, 0,5% додецилсульфата натрия и 50 мкг/мл протеиназы К-

2. Инкубируйте 2 ч при 50°С.

3. Охладите на льду, добавьте равный объем фенола и экстрагируйте 15 мин при 4°С, медленно перемешивая. Отцентрифугируйте и осторожно удалите водный слой пипеткой с широким носиком.

4. Добавьте два объема 95%-ного спирта и осторожно намотайте ДНК на толстую стеклянную палочку. Отмойте три раза 70%-ным спиртом, высушите на воздухе и суспендируйте в 3 мл раствора, содержащего 10 мм трис-HCl рН 7,4, 0,1 мМ ЭДТА.

Для последующего эффективного получения космид не обязательно использование градиента CsCl.

Приготовление фрагментов

Чтобы избежать ошибок в процессе картирования путем подбора пар по методу «отпечатков пальцев», важно не использовать при приготовлении фрагментов лигазную обработку. Мы предпочитаем двумерную электрофоретическую очистку выделению в градиенте плотности сахарозы, так как это дает более ясную картину распределения по размерам и достаточный выход эффективно клонируемых фрагментов.


Страница: