Рекомбинантные белки. Плазмиды
В результате появился высокоэффективный инструмент экспериментального изучения генетического материала: его организации, функционирования, взаимодействия различных элементов и эволюции. Для ряда наиболее генетически изученных организмов удалось получить, образно говоря, «чертежи» их генома.
Когда были разработаны методики выделения отдельных генов, подобраны условия сохранения их стабильности и определены закономерности переноса генов, появилась реальная возможность конструирования рекомбинантной ДНК (создание рекомбинантной ДНК буквально означает объединение (рекомбинирование) двух отрезков ДНК разных видов). По сути дела, наследственная изменчивость стала формироваться целенаправленно по воле и желанию человека, и были получены организмы, обладающие таким сочетанием генов (и соответственно, признаков), которые отсутствуют в природе.
В настоящее время для многих специалистов методы генной инженерии - методы рекомбинантных ДНК - являются краеугольным камнем здания биотехнологии.
Использование методов генной инженерии предполагает направленное, по заранее заданной программе конструировании молекулярных генетических систем вне организма с последующим введением их в живой организм.
Использование методологии генной инженерии в прикладном аспекте предполагает конструирование таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.
Благодаря этому решаются многие прикладные проблемы: получение «биологических реакторов» - микроорганизмов, растений и животных, нарабатывающих фармакологически значимые для человека белковые препараты, создание высоко продуктивных пород животных с определёнными ценными для человека признаками, выведение растений, устойчивых к различным патогенам и вредителям и так далее. С этими же наукоёмкими технологиями связана и генетическая паспортизация, и диагностика генетических заболеваний, и создание ДНК-вакцин, и терапия различных заболеваний. Таким образом, сложившаяся благоприятная ситуация в биологии явилась мощным толчком в развитии современной биотехнологии, весьма важной области практического приложения результатов фундаментальных наук.
Список литературы
1. Атанасов А. Биотехнология в растениеводстве. Новосибирск: ИЦиГСО РАН, 1993. – 241 с.
2. Барановов В.С. Генная терапия – медицина XXI века // Соросовский образовательный журнал. № 3. 1999. С. 3 – 68.
3. Бекер М.Е., Лиепиньш Г.К., Райпулис Е.П. Биотехнология. М.: Агропромиздат, 1990. 334 с.
4. Глебов О.К. Генетическая трансформация соматических клеток // Методы культивирования клеток. Л.: Наука, 1988.
5. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. М.: Мир, 2002.
6. Егоров Н.С., Самуилов В.Д. Современные методы создания промышленных штаммов микроорганизмов // Биотехнология. Кн. 2. М.: Высшая школа, 1988. 208 с.
7. Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. – Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.
8. Пирузян Э.С., Андрианов В.М. Плазмиды агробактерий и генная инженерия растений. М.: Наука, 1985. 280 с.