Рекомбинантные белки. Плазмиды
Обычно о присутствии плазмид в бактериальной клетке судят по проявлению определенных признаков, к которым относится устойчивость к отдельным лекарственным препаратам, способность к переносу генов при конъюгации, синтез веществ антибиотической природы, способность использовать некоторые сахара или обеспечивать деградацию ряда веществ.
Большинство бактериальных плазмид обладает способностью автономно реплицироваться, имеет фактор несовместимости и фактор переноса. Плазмиды несут множество специальных, детерминируемых каждой отдельной плазмидой маркеров: устойчивость к антибиотикам, тяжелым еталлам, ультрафиолетовому облучению, способность к биосинтезу токсинов.
В качестве векторов могут использоваться опухолеобразующие плазмиды бактерий. Виды Agrobacterium эволюционно родственны клубеньковым бактериям, относящимся к роду Rhizobium, и имеют много общих с ними черт. Однако характер взаимодействия агробактерий с растением имеет своеобразные особенности [6].
Взаимодействие видов Agrobacterium с растениями представляет особый интерес, так как при этом виде паразитизма один из партнеров специфически видоизменяет свойства хозяина, встраивая свои гены в его геном. Кроме того, это служит уникальным примером миграции ДНК прокариот в эукариотическую клетку. Хлоропласты и митохондрии содержат полноценную генетическую систему, то есть все компоненты, необходимые для экспрессии генетической информации: ДНК, ДНК-полимеразы, РНК-полимеразы и белоксинтезирующий аппарат (рибосомы, т-РНК, аминоацил-тРНК-синтетазы).
3. Получение плазмид
Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, то естьсодержащих чужеродный ген, плазмид.
Каждая бактерия помимо основной, не покидающей клетку молекулы ДНК (5-6 млн. пар нуклеотидов), может содержать несколько различных плазмид, которыми она обменивается с другими бактериями.
Плазмиды являются автономными генетическими элементами, реплицирующимися (то есть размножающимися) в бактериальной клетке не в то же время, что основная молекула ДНК. Хотя на долю плазмид приходится лишь небольшая часть клеточной ДНК, именно они несут такие жизненно важные для бактерии гены, как гены лекарственной устойчивости. Разные плазмиды содержат разные гены устойчивости к антибактериальным препаратам.
Плазмидные векторы, как правило, создают методом генной инженерии, так как природные (немодифицированные) плазмиды лишены ряда обязательных для «высококачественнного вектора» свойств:
- небольшого размера, так как эффективность переноса экзогенной ДНК в E.coli снижается при длине плазмиды более 15 тысяч пар нуклеотидов;
- наличие сайта рестрикции, в который осуществлена вставка;
- наличия одного или более селективных генетических мркеров для идентификации реципиентных клеток, несущих рекомбинантную ДНК.
Для получения рекомбинантной плазмиды ДНК одной из плазмид расщепляется выбранной рестриктазой. Ген, который нужно ввести в бактериальную клетку, расщепляют из ДНК хромосом человека с помощью рестриктазы, поэтому его «липкие» концы являются комплементарными нуклеотидным последовательностям на концах плазмид.
Ферментом лигазой «склеивают» оба куска ДНК в результате получается рекомбинантная кольцевая плазмида, которую вводят в бактерию E. coli. Все потомки этой бактерии (клоны) содержат в плазмидах чужеродный ген. Весь этот процесс называют клонированием.
Вводят плазмиды в соматические клетки с помощью химических реагентов, повышающих проницаемость клеточной оболочки. В частности, чтобы обеспечить проникновение в клетки плазмидной ДНК, их обрабатывают ледяным раствором кальция хлорида, затем выдерживают при 42°С в течение 1,5 минут. Эта обработка приводит к локальному разрушению клеточной стенки. Максимальная частота трансформации -10-3, то есть на каждую тысячу клеток приходится одна трансформированная. Частота трансформации не бывает 100%-й, затем используют схемы отбора, позволяющие идентифицировать трансформированные клетки [2].
В качестве маркеров плазмида может содержать гены, определяющие устойчивость бактерии к антибиотикам. Вставка чужеродного (донорного) гена в маркерный ген приводит к инактивации последнего. Это позволяет отличить трансформированные клетки, получившие векторную плазмиду (утратившие устойчивость к антибиотику), от клеток, получивших рекомбинантную молекулу (сохранивших устойчивость к одному, но утративших устойчивость к другому антибиотику). Этот прием называется инактивацией маркера вставки.
Для отбора трансформированных клеток, содержащих рекомбинантную ДНК (гибридную плазмиду), проводят тестирование на резистентность к определенным антибиотикам. Например, клетки, несущие гибридную плазмиду, устойчивы в ампициллину, но чувствительны к тетрациклину (в маркерный ген которого и внедрена донорная ДНК).
Процесс разделения геномной ДНК на клонируемые элементы и введения этих элементов в клетки-хозяева называется созданием геномной библиотеки (банка клонов, банка генов).
Все системы клонирования должны отвечать двум основным требованиям:
1) наличию нескольких сайтов для клонирования;
2) возможности достаточно простой идентификации клеток с рекомбинантными ДНК.
Для всех рутинных процедур молекулярного клонирования широко используется E.coli в качестве клетки-хозяина. Клетки, способные поглощать чужеродную ДНК, называются компетентными; компетентность E.coli повышают, используя специальные условия культивирования. Для получения больших количеств чужеродных белков с помощью рекомбинантных штаммов E.coli была сконструирована плазмида, содержащая сильный промотор, селективный маркерный ген и короткий участок с несколькими уникальными сайтами для рестрицирующих ферментов – полиленкер.
Эффективными методами трансформации E.coli плазмидами является электропорация (воздействие на клеточные мембраны электрическим током для увеличения их проницаемости). Для введения клонированных генов в соматические клетки также применяют микроинъекции и микроукалывания или слияние с клеткой нагруженных ДНК мембранных везикул (липосом).
Заключение
Без преувеличения можно сказать, что прошлое, настоящее и будущее биотехнологии базируется на генетическом межвидовом и внутривидовом разнообразии организмов. Изменение уровня развития науки лишь способствует расширению и возникновению качественно новых способов использования этого разнообразия.
Так, интенсивное развитие фундаментальных исследований в биологии во второй половине ХХ столетия привело к существенному прогрессу в таких разделах биологии, как молекулярная биология и генетика, биохимия и энзимология, нейрофизиология и биофизика. Использование методологии точных наук (физики, химии, математики) позволило исследователям характеризовать различные жизненно важные процессы на уровне межмолекулярных взаимодействий. Расшифровка структуры ДНК и РНК, процесса реализации генетической информации привело к разработке так называемой ДНК-технологии, которая предоставила возможность исследователю работать с отдельными генами - конкретными участками генетического материала.