Регулирование белкового синтеза
Аминокислоту лейцин определяет целых 6 кодонов (для простоты изложения не буду их перечислять). Такой же избыток кодонов обнаруживается для серина и аргинина. Пять аминокислот (Гли, Вал, Про, Ала и Тре) кодируются с четырехкратным избыт-ком. Изолейцину соответствуют 3 кодона. Для метионина существует только один кодон (АУГ). Такое же строгое соответствие имеет место для триптофана, У остальных девяти аминокислот имеется по 2 кодона.
У четырехкратно, трехкратно и двукратно вырожденных кодонов наблюдается различие только в последнем (считая по направлению движения рибосомы), третьем нуклеотиде кодона. Нередко предполагают, что этот нуклеотид не играет существенной роли и . 41 кодон «соглашается» с таким пренебрежением. Для «шестикратного вырождения» четырех нуклеоти-дов, которые могут занимать третье положение в кодоне, уже недостаточно. Для Арг и Лей приходится дополнительно признать несущественность и первого нуклеотида их кодонов. Еще хуже обстоит дело с серином. Два из его шести кодонов отличаются от остальных четырех уже в первом и втором йуклеотидах. Что-то слишком много несущественного! Природа этого не терпит.
В утверждении о несущественности столь многих нуклеотидов в кодонах молчаливо предполагается, что транспортных тРНК имеется только 20 — по числу аминокислот (и у каждой — только один из «разрешенных» антикодонов). Так ли это? Быть может вырождение имеет место и для тРНК («изоакцепторные тРНК»)? То есть, для доставки аргинина, лейцина и серина в рибосому существует по шесть различных тРНК с разными возможными для этих аминокислот антикодонами. Далее аналогично — по четыре, три и две различных тРНК. И только для метионина и трип-тофана — по одной. В этом случае должны существовать 61 различных тРНК. Экспериментальные данные говорят в пользу такого предположения.
«Изоакцепторных», то есть различных, но присоединяющих к себе одну и ту же аминокислоту транспортных РНК имеется не менее 59-ти. (по некоторым подсчетам их еще больше, но это требует проверки, так как суммарные цифры получали из совокупности работ разных авторов). Изоакцепторные тРНК для одной аминокислоты обнаруживают методом колоночной хроматографии, с которым мы будем знакомиться позже.
Но если транспортных РНК столько же, сколько кодонов, то каждый кодон «узнается» ими целиком и никаких нуклеотидов, не играющих существенной роли в кодонах, нет.
При изучении транспортных РНК возникает еще один вопрос, на который пока никто не ответил. В отличие от всех остальных РНК, транспортные РНК обязательно имеют в своей первичной структуре «модифицированные» нуклеотиды. Иногда это только присоединение к нуклеиновому основанию метильной группы (СНд). А иногда — довольно больших атомардых конструкций, размером чуть ли не в само основание. У разных тРНК модификации разные и модифицированные нуклеотиды расположены в различных местах. Чем организм сложнее, тем модифицированных нуклеотидов в его тРНК больше. Зачем они?
Я предлагаю обсудить довольно смелую гипотезу. Молекула тРНК компактна. В ней много спаренных нуклеотидов («шпилек»), образованных связыванием удаленных друг от друга по одиночной нити тРНК, но комплементарных, участков. Можно утверждать, что каждая молекула тРНК имеет вполне определенную и достаточно жесткую пространственную форму. Модификация некоторых нуклеотидов в молекуле, естественно, влияет на эту форму. У высших организмов таких модификаций достаточно много, чтобы иметь право предположить различие пространственных форм всех изоакцепторных тРНК.
Теперь вернемся к рис. 29. Мы видим, что аа-тРНК № 4 только начинает входить в канал Kg. Связаться со своим код оном, «узнать» его она может только внутри канала. Ошибки при проникновении в Kg разных аа-тРНК, очевидно, нежелательны —ведь неподходящей аа-тРНК пришлось бы возвращаться из рибо-сомы обратно в цитоплазму. (Да и непонятно каким образом — ведь для рибосомы движения в обратную сторону быть не может.) А что, если объемная форма тРНК служит «пропуском» в канал? В этом случае конфигурация входа в канал должна «дышать» — перестраиваться под влиянием каждого «ожидающего» кодона, как бы подающего на вход команду для пропуска подходящей тРНК. Слишком сложно? Но не даром же в рибосомах эукариотов почти вдвое больше разных белков, чем у прокариотов. (Принцип работы рибосом, наверное, в обоих случаях одинаков, но проблемы регулирования биосинтеза белка, как мы увидим, у эукариотов значительно сложнее.)
Все эти рассуждения приведена здесь для иллюстрации того, как рождается (и проверяется) научная гипотеза. Для будущих исследователей в области молекулярной биологии раннее знакомство с логикой построения такой гипотезы, я полагаю весьма полезным.
В связи с изложенным материалом имеет смысл по-новому взглянуть на механизм регулирования белкового синтеза, особенно у высших организмов. На классическом примере лак-оперона E.coli Жакоб и Моно предложили знакомую вам концепцию, в которой участвуют «оператор», управляющий разрешением транскрипции структурных генов. Перед оператором стоит «ген-регулятор». Он способен вести синтез белка-репрессора, который связывается с оператором. В свою очередь приходящая извне в клетку молекула-«активатор» может связать репрессор. Регулирование синтеза белков происходит на уровне транскрипции ДНК-синтеза иРНК. Это хорошо для бактерий, где вся ДНК более или менее доступна для считывания наследственной информации в течение всего времени жизни клетки. При возникновении необходимости наработки нового фермента, например, при изменении питательной среды, РНК-полимераза легко может снять много копий иРНК с нужного участка генома бактерии.
ДНК высших организмов сверхскручена очень тесно, очень плотно упакована. Уместно сказать несколько слов о способе этой упаковки. Геном человека, например, насчитывает около 3-х миллиардов пар оснований (считая по гаплоидному набору хромосом). Во введении было упомянуто, что расстояние между соседними парами в спирали ДНК — примерно 0,34 миллимикрона. Откуда следует, что полная длина «молекулы» ДНК у человека составляет 1 метр! Как такую длину уместить в ядре клетки? Однако даже бытовой опыт подсказывает, что очень длинную, но очень тонкую нить можно свернуть в крошечный клубок. (Еще древние греки умели изготавливаться столь тонкие нити, что сотканное из них платье можно было протянуть через кольцо для пальца.) Но хаотический клубок непригоден. Его трудно распутать. А сворачивание ДНК должно быть хорошо организовано, хотя бы для того, чтобы быстро осуществить редупликацию всей молекулы.
Для этой цели служат специальные белки — «гистоны», тесно связанные с ДНК. Связь эта не ковалентная, а электростатическая. Все гистоны (их насчитывается 5 типов) — суть богатые лизином и аргинином «щелочные» белки. В нейтральной среде они несут достаточно большой положительный заряд, за счет которого притягиваются к отрицательно заряженным остаткам фосфорной кислоты в ДНК. Гистоны для упорядочения свертывания молекул ДНК играют роль, сходную с ролью катушки для ниток. На электронных микрофотографиях удается разглядеть частично развернутый дезоксирибонуклеопротеин (ДНП), как именуют комбинацию ДНК с гистонами, в виде нити, диаметром около 2 тц, на которой тесно расположены своего рода бусинки — «нуклеосомы». Полагают, что основу каждой нуклеосомы составляет октамер из восьми молекул гистонов (4-х типов), образующий подобие сердечника, на который навита двухнитевая спираль ДНК, образуя два витка общей длиной в примерно 150 пар оснований. Линейный отрезок длиной около 50 пар оснований соединяет соседние нуклеосомы.