рДНК-биотехнология. Способы биотрансформации клеток
Рефераты >> Биология >> рДНК-биотехнология. Способы биотрансформации клеток

В нашей стране получены свиньи, несущие ген соматотропина. Они не отличались по темпам роста от нормальных животных, но изменение обмена веществ сказалось на содержании жира. У таких животных ингибировались процессы липогенеза и активировался синтез белка. К изменению обмена веществ приводило и встраивание генов инсулиноподобного фактора. Такие трансгенные свиньи были созданы для изучения цепочки биохимических превращений гормона, а побочным эффектом явилось укрепление иммунной системы.

Самая мощная белоксинтезирующая система находится в клетках молочной железы. Если поставить гены чужих белков под контроль казеинового промотора, то экспрессия этих генов будет мощной и стабильной, а белок будет накапливаться в молоке (животное-ферментер). Уже получены трансгенные коровы, в молоке которых содержится человеческий белок лактоферрин. Этот белок планируют применять для профилактики гастроэнтерологических заболеваний у людей с низкой иммунорезистентностью. Это больные СПИДом, недоношенные младенцы, больные раком, прошедшие радиотерапию. Ведутся клинические испытания такого молока. Уже сейчас корпорация Genzyme Transgenics планирует исследования с целью создания трансгенного крупного рогатого скота, содержащего в молоке человеческий альбумин. Был куплен патент на получение эмбрионов, содержащих геном клеток соединительной ткани (фибробластов), включающий ген, ответственный за синтез человеческого белка. Подобная технология позволяет увеличить эффективность создания трансгенных молочных животных, так как при обычном впрыскивании генов в оплодотворенную яйцеклетку рождается от только 5 - 10% трансформированных животных, из них - несколько самцов, не дающих молока.

Использование новой технологии клонирования позволяет получать животных только женского пола, дающих трансгенный протеин. Альбумин используется в терапии для поддержания осмотического давления в крови. Ежегодно в мире требуется около 440 тысяч литров плазмы крови для выделения этого белка (стоимость около 1,5 млрд. $). Каждая молочная корова может произвести 80 кг рекомбинантного человеческого альбумина ежегодно. Genzyme Transgenics занимается разработкой аналогичных методов получения человеческого гормона роста и β-интерферона.

В Англии созданы трансгенные овцы, молоко которых содержит фактор свертывания крови.

В нашей стране были попытки создать овец, продуцирующих химозин (фермент для сыроварения). Было получено 2 овцы, у одной – ген не экспрессировался, у второй содержание химозина достигало 300 мг/л. Однако потомство этой овцы давало низкие удои – порядка 50 кг за период лактации. Причина заключалась в том, что химозин вырабатывается в виде предшественника – прохимозина, который превращается в активный фермент при рН=5. Было запланировано получать именно прохимозин, но в каких-то участках вымени происходило снижение рН, что приводило к активации химозина непосредственно в организме. Активный химозин свертывал молоко, а оно закупоривало протоки вымени. Сейчас пытаются решить эту проблему.

В Подмосковье получены кролики, выделяющие γ-интерферон, эритропоэтин, но кролики не являются традиционными продуцентами молока. Эксперименты же по трансформации сельскохозяйственных животных очень дорогостоящи – одно трансгенное животное стоит десятки и сотни тысяч долларов.

Трансгенных животных получают и для целей ксенотрансплантации. Одним из излюбленных доноров органов являются свиньи, так как имеется анатомическое сходство органов и сходство иммунологических свойств. Реакции отторжения при трансплантации имеют сложный механизм. Одним из сигналов для атаки организма на чужой орган являются белки, локализованные на внешней поверхности мембраны. У трансгенных свиней эти белки заменены на человеческие.

Еще одно направление трансгеноза – получение устойчивых к болезням животных. Животноводство держится на вакцинах, так как селекция ведется преимущественно на хозяйственно ценные признаки – шерстистость, молочность и т. д. Повышение устойчивости – дело генных инженеров. К защитным белкам относятся интерфероны, поэтому ген интерферона встраивали различным животным. Трансгенные мыши получили устойчивость, они не болели или болели мало, а вот у свиней такого эффекта не обнаружено.

Другое направление – введение генов, кодирующих антисмысловую РНК. Для животноводства острой проблемой являются лейкозы, вызываемые РНК-вирусами. Трансгенные кролики, несущие гены, отвечающие за присутствие в клетке антисмысловой РНК, были устойчивы к лейкозам.

Трансгенных животных можно использовать для изучения наследственных заболеваний мозга и нервной системы. Гены болезни Альцгеймера (отложение белка β-амилоида приводит к образованию характерных бляшек) и гены, отвечающие за развитие эпилепсии, болезней мозга вводятся в геном нормальных животных; при этом получают трансгенных животных-моделей, на которых можно испытывать различные терапевтические приемы.

Трансгенных животных стали использовать для исследования воспалительных и иммунологических заболеваний человека, например, ревматоидного артрита. Моделируются болезни, связанные с липидным обменом.

Заключение

Хотя генетика и генная инженерия уже играют огромную роль в медицине и сельском хозяйстве, основные результаты ещё впереди. Нам ещё очень многое предстоит узнать о том, как работает сложная генетическая система в нашем организме и у других видов живых существ.

Необходимо определить функции и назначение каждого гена, определить, каковы условия его активации, в какие периоды жизни, в каких частях тела и при каких обстоятельствах он включается и приводит к синтезу соответствующего белка. Далее, необходимо понять, какую роль играет в организме этот белок, выходит ли он за пределы клетки, какие сообщения несёт, какие реакции катализирует, как влияет на запуск биологических процессов в других частях организма, какие гены активирует. Отдельной сложной задачей является решение проблемы сворачивания белков - как, зная последовательность аминокислот, составляющих белок, определить его пространственную структуру и функции. Эта проблема требует новых теоретических знаний и более мощных суперкомпьютеров.

Но учёные не пасуют перед масштабом этой задачи. Расшифровка генома человека потребовала более десяти лет, решение проблемы сворачивания белков может занять чуть дольше, но когда она будет решена, человек сможет полностью контролировать жизненные процессы в любых организмах на всех уровнях.

Список литературы

1. Албертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. Т. 1 - 3. М.: Мир, 1994.

2. Анализ генома. Методы / Под ред. К. Дейвиса. М.: Мир, 1990. 246 с.

3. Атанасов А. Биотехнология в растениеводстве. Новосибирск: ИЦиГСО РАН, 1993. – 241 с.

4. Барановов В.С. Генная терапия – медицина XXI века // Соросовский образовательный журнал. № 3. 1999. С. 3 – 68.

5. Бекер М.Е., Лиепиньш Г.К., Райпулис Е.П. Биотехнология. М.: Агропромиздат, 1990. 334 с.


Страница: