Перспективы развития биотехнологии
Кроме увеличения продуктивности сортов за счет придания им устойчивости к заболеваниям, вредителям, сорнякам и воздействиям окружающей среды, сельскохозяйственные биотехнологи работают над непосредственным повышением урожайности культур. Японские ученые встроили гены, обеспечивающие фотосинтез растений кукурузы, в геном риса. Это повысило эффективность усвоения энергии солнечного света и накопления в зерне крахмала, и урожайность нового сорта риса оказалась на 30% выше по сравнению с исходным уровнем. Другим подходом, но с той же конечной
целью, является блокирование определенных генов растения, что приводит к перераспределению питательных веществ между различными частями растения. Урожайность значительно возрастает при преимущественном накоплении крахмала или жирных кислот не в листьях растения, а, например, в клубнях картофеля или семенах рапса.
Биотехнологические методы также позволяют повышать эффективность усвоения растениями необходимых им микроэлементов. Например, мексиканские ученые создали генетически модифицированные растения, корни которых секретируют в окружающую среду лимонную кислоту. В результате происходит небольшое подкисление почвы и переход содержащихся в ней минералов, в том числе кальция, фосфора и калия, в растворимую форму, что делает их доступными для растений.
Азот является важнейшим элементом, лимитирующим рост растений, и ученые, работающие в разных областях, шаг за шагом приближаются к разгадке секретов симбиотических отношений, позволяющих азотфиксирующим бактериям поглощать атмосферный азот и отдавать его растениям, предоставляющим им убежище в корневых клубеньках:
– генетики-ботаники из Венгрии и Англии идентифицировали растительный ген и соответствующий белок, позволяющий растениям вступать во взаимодействие с почвенными азотфиксирующими бактериями;
– генетики-микробиологи из университета Квинсленда (Австралия) идентифицировали бактериальный ген, стимулирующий формирование корневых клубеньков;
– в результате совместной работы молекулярных биологов Европейского Союза, США и Канады был полностью расшифрован геном одного из видов азотфиксирующих бактерий;
– ученые, занимающиеся химией белков, расшифровали точную структуру фермента, превращающего атмосферный азот в приемлемую для растений форму.
Вывод
Центральная проблема биотехнологии - интенсификация биопроцессов как за счет повышения потенциала биологических агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине.
В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК. Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами. В частности, возможно управление процессом фиксации атмосферного азота и перенос соответствующих генов из клеток микроорганизмов в геном растительной клетки.
Биотехнология — типичное порождение нашего бурного, ди намичного XXI в. Она открывает новые горизонты перед челове ческим разумом. Проблемы биотехнологии чрезвычайно много образны, начиная от чисто технических (например, снижение каталитической активности ферментов при их иммобилизации) и кончая тонкими интеллектуальными проблемами, связанными с обеднением фундаментальной науки в связи с доминирова нием чисто проблемно-прикладных разработок.
Список использованной литературы
1. «Биотехнология проблемы и перспективы» - Егоров Н.С., Москва, «Высшая школа» 1987 г.
2. «Сельскохозяйственная биотехнология» - Калашникова Е.А., Шевелуха В.С., Воронин Е.С., «Высшая школа» 2003 г.