Перспективы развития биотехнологии
В конце 90-х годов XX в. учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов, хотя это направление нуждается еще в дальнейших серьезных исследованиях. А вот в ксенотрансплантации – пересадке органов от одного вида живых организмов другому, - достигнуты несомненные результаты. Наибольшие успехи получены при использовании свиней, имеющих в генотипе перенесенные гены человека, в качестве доноров различных органов. В этом случае наблюдается минимальный риск отторжения органа.
Учёные также предполагают, что перенос генов поможет снизить аллергию человека к коровьему молоку. Целенаправленные изменения в ДНК коров должны привести также к уменьшению содержания в молоке насыщенных жирных кислот и холестерина, что сделает его еще более полезным для здоровья. Потенциальная опасность применения генетически модифицированных организмов выражается в двух аспектах: безопасность продовольствия для здоровья людей и экологические последствия. Поэтому важнейшим этапом при создании генно-модифицированного продукта должна быть его всесторонняя экспертиза во избежание опасности того, что продукт содержит протеины, вызывающие аллергию, токсичные вещества или какие-то новые опасные компоненты.
Биотехнология сельскохозяйственных растений. Перспективы
Начиная с каменного века люди отбирали растения с удовлетворяющими их характеристиками и сохраняли их семена на следующий год. Отбирая лучшие семена, первые агрономы осуществили первичное генетическое модифицирование растений и таким образом одомашнили их задолго до того, как были открыты основные генетические закономерности. Сотни лет фермеры и селекционеры растений пользовались перекрестным скрещиванием, гибридизацией и другими подходами к модификации генома, приводящими к увеличению урожайности, улучшению качества продукции и повышению устойчивости растений к насекомым-вредителям, болезнетворным микроорганизмам и неблагоприятным условиям среды.
По мере углубления знаний о генетике растений человек начал осуществлять целенаправленное перекрестное скрещивание (кроссбридинг) обладающих желаемыми характеристиками или не имеющих нежелательных признаков сортов растений и межвидовую гибридизацию с целью получения новых сортов, сохранивших лучшие качества обеих родительских линий. В настоящее время практически любая сельскохозяйственная культура является результатом кроссбридинга, гибридизации или применения обоих подходов. К сожалению, эти методы нередко дороги, требуют больших затрат времени, неэффективны и имеют существенные практические ограничения. Например, для создания с помощью традиционного кроссбридинга сорта кукурузы, устойчивого к определенным насекомым, потребовался бы не один десяток лет, причем без гарантированного результата.
Биотехнологические подходы позволяют современным селекционерам выделять отдельные гены, отвечающие за желаемые признаки, и перемещать их из генома одного растения в геном другого. Этот процесс гораздо более точен и избирателен, чем традиционное скрещивание, в ходе которого тысячи генов, обладающих неизвестными функциями, перемещаются из одного сорта или вида растений в другой.
Биотехнология позволяет и то, что не под силу природе – перемещение генов между растениями, животными и микроорганизмами. Это открывает огромные возможности для улучшения качества урожая. Например, мы можем взять бактериальный ген, токсичный для болезнетворного грибка, и встроить его в геном растения. Растение при этом начинает синтезировать фунгицидный белок и в борьбе с грибком не нуждается в помощи извне.
Повышение урожайности
Современные селекционеры-биотехнологи ставят перед собой те же задачи, что и при традиционном кроссбридинге и других методах модификации генома: повышение урожайности; устойчивость к болезнетворным бактериям, грибкам и вирусам; способность выживать в неблагоприятных условиях среды (при заморозках и засухах); устойчивость к вредителям, таким как насекомые, сорняки и круглые черви (нематоды).
Естественная защита растений
Растения, как и животные, обладают врожденными механизмами защиты от различных насекомых и заболеваний. В настоящее время ученые ведут активный поиск соединений, которые активизировали бы эти естественные механизмы, не нанося при этом вреда окружающей среде.
Биотехнология также открывает большие перспективы в работе над созданием новых биопестицидов, таких как белки микроорганизмов и жирные кислоты, токсичные для определенных сельскохозяйственных вредителей, но безвредные для человека, животных, рыб, птиц и полезных насекомых. Уникальность механизмов действия биопестицидов обеспечивает защиту от вредителей, устойчивых к традиционным средствам.
Уже в 30-х годах прошлого века фермеры начали использовать в качестве биопестицида микроорганизм Bacillusthuringiensis (Bt), естественной средой обитания которого является почва. Некоторые белки, синтезируемые B. thuringiensis, смертельны для определенных насекомых, в том числе для кукурузного мотылька (Ostrinianubilalis), ежегодно наносящего сельскому хозяйству США урон в 1,2 миллиарда долларов. Использование аэрозолей, содержащих бактерии Bt, позволяет уничтожить насекомых-вредителей, не прибегая к химическим средствам.
Возможности биотехнологии позволяют нам переносить гены белков, ядовитых для определенных вредителей (но не для людей, животных и полезных насекомых), в геном растений, которыми эти вредители питаются. Растение, которое раньше было источником пищи, становится смертельным для вредителя, что отменяет необходимость опрыскивания плантаций химическими пестицидами.
Устойчивость к гербицидам
Продуктивность сельскохозяйственной культуры зависит от присутствия в среде обитания сорняков, вступающих с основной культурой в конкуренцию за питательные вещества и влагу. Для уничтожения нежелательных растений сельскохозяйственные плантации, как правило, опрыскиваются гербицидами, которые в большей или меньшей степени токсичны не только для сорняков.
С помощью биотехнологических приемов можно повысить устойчивость культурных растений к гербицидам и таким образом в несколько раз уменьшить поступление токсичных веществ в окружающую среду.
Устойчивость к неблагоприятным факторам среды
Кроме описанных выше биологических факторов, препятствующих росту и развитию растений, существует еще целый ряд абиотических стрессорных воздействий, регулярно оказываемых природой на сельскохозяйственные культуры – это засухи, холод, жара, повышенная кислотность или засоленность почв. Селекционерам с помощью кроссбридинга удалось создать достаточное количество сортов растений, устойчивых к биологическим факторам окружающей среды, однако в отношении устойчивости к абиотическим стрессам все не так просто. Основным лимитирующим моментом в данном случае является отсутствие у многих видов культурных растений диких родственников, обладающих устойчивостью к тому или иному фактору среды.
Репродуктивная несовместимость, ограничивающая возможности традиционного кроссбридинга, совершенно не влияет на возможности биотехнологии растений, т.к. гены практически любого организма могут использоваться для улучшения существующих сортов сельскохозяйственных культур. В настоящее время ученые делают большие достижения в разработке сортов, способных расти и давать урожай в различных природных условиях. В качестве примера можно привести генетически модифицированные сорта помидоров и канолы (разновидность рапса), которые могут переносить в 100 раз более высокий уровень солености почвы, чем традиционные сорта. Исследователи также идентифицировали большое количество генов, ответственных за естественную устойчивость некоторых растений и бактерий к холоду, жаре и засухе. Мексиканские ученые создали сорта кукурузы и папайи, устойчивые к повышенному содержанию в почве алюминия, оказывающему негативное влияние на продуктивность сельского хозяйства многих развивающихся стран.