Основы селекции
Клеточная инженерия — это метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. Она базируется на использовании методов культуры клеток и тканей. Выделяются два направления клеточной инженерии: 1) использование клеток, переведенных в культуру, для синтеза различных полезных для человека соединений; 2) применение культивируемых клеток для получения из них растений-регенерантов.
Растительные клетки в культуре — это важный источник ценнейших природных веществ, так как они сохраняют способность синтезировать свойственные им вещества: алкалоиды, эфирные масла, смолы, биологически активные соединения. Так, переведенные в культуру клетки женьшеня продолжают синтезировать, как и в составе целостного растения, ценное лекарственное сырье. Причем, в культуре с клетками и их геномами можно проводить любые манипуляции. Используя индуцированный мутагенез, можно повышать продуктивность штаммов культивируемых клеток и проводить их гибридизацию (в том числе и отдаленную) гораздо легче и проще, чем на уровне целостного организма. Кроме этого, с ними, как и с прокариотическими клетками, можно проводить генно-инженерные работы.
Путем гибридизации лимфоцитов (клеток, синтезирующих антитела, но неохотно и недолго растущих в культуре) с опухолевыми клетками, обладающими потенциальным бессмертием и способными к неограниченному росту в искусственной среде, решена одна из важнейших задач биотехнологии на современном этапе — получены клетки гибридомы, способные к бесконечному синтезу высокоспецифических антител определенного типа.
Таким образом, клеточная инженерия позволяет конструировать клетки нового типа с помощью мутационного процесса, гибридизации и, более того, комбинировать отдельные фрагменты разных клеток (ядра, митохондрии, пластиды, цитоплазму, хромосомы и т. д.), клетки различных видов, относящиеся не только к разным родам, семействам, но и царствам. Это облегчает решение многих теоретических проблем и имеет практическое значение.
Клеточная инженерия широко используется в селекции растений. Выведены гибриды томата и картофеля, яблони и вишни. Регенерированные из таких клеток растения с измененной наследственностью позволяют синтезировать новые формы, сорта, обладающие полезными свойствами и устойчивые к неблагоприятным условиям среды и болезням. Этот метод широко используется и для «спасения» ценных сортов, пораженных вирусными болезнями. Из их ростков в культуре выделяют несколько верхушечных клеток, еще не пораженных вирусом, и добиваются регенерации из них здоровых растений сначала в пробирке, а затем пересаживают в почву и размножают.
Заключение
Для того чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе, человечеству необходимо научиться эффективно изменять наследственную природу живых организмов. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.
Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача — она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.
У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем — непосредственно белки и незаменимые аминокислоты, употребляемые в пищу.
Список литературы
1. Биология. / Н.П.Соколова, И.И.Андреева и др. – М.: Высшая школа, 1987. 304с.
2. Колесников С.И. Экология. – Ростов-на-Дону: Феникс, 2003. – 384с.
3. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология.– М.: Айрис-пресс, 2005. 512с.
4. Петров Б.Ю. Общая биология. – СПб.: Химия, 1999. – 420с
5. Петров К.М. Взаимодействие общества и природы: Учебное пособие для вузов. - СПб: Химия, 1998. – 408с.
Приложение 1
Центры происхождения культурных растений (по Н. И. Вавилову)
Центры происхождения |
Местоположение |
Культурные растения |
Южноазиатский тропический |
Тропическая Индия, Индокитай, Южный Китай, о-ва Юго-Восточной Азии |
Рис, сахарный тростник, цитрусовые, огурец, баклажаны и др. (50 % культурных растений) |
Восточноазиатский |
Центральный и Восточный Китай, Япония, Корея, Тайвань |
Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20 % культурных растений) |
Юго-Западноазиатский |
Малая и Средняя Азия, Иран, Афганистан, Юго-Западная Индия |
Пшеница, рожь, бобовые культуры, лен, конопля, репа, морковь, виноград, чеснок, груша, абрикос и др. (14 % культурных растений) |
Средиземноморский |
Страны по берегам Средиземного моря |
Капуста, сахарная свекла, маслины, кормовые травы (11 % культурных растений) |
Абиссинский |
Абиссинское нагорье Африки |
Твердая пшеница, ячмень, сорго, кофейное дерево, бананы |
Центральноамериканский |
Южная Мексика |
Кукуруза, какао, тыква, табак, хлопчатник |
Южноамериканский |
Западное побережье Южной Америки |
Картофель, ананас, кокаиновый куст, хинное дерево |
Приложение 2
Схема менделевского скрещивания горохов пурпурноцветковых с белоцветковыми
пурпурный цветок белый цветок
|