Обзор методов и способов измерения физико-механических параметров рыбы
Рефераты >> Биология >> Обзор методов и способов измерения физико-механических параметров рыбы

Под жесткостью тела рыбы понимается отношение работы по сжатию тела рыбы при 5-миллиметровой деформации к площади сжимающих пластин:

(7)

где С — жесткость тела рыбы, Н/м; А — работа по сжатию тела рыбы, Н•м; F — площадь сжимающих пластин, м2.

Этот критерий оценки структурно-механических свойств рыбы назван жесткостью в связи с тем, что его размерность сов падает с размерностью жесткости, общепринятой в технике.

Из рис. 10 видно, что чем меньше сопротивляемость сжатию тела рыбы, тем меньше угол наклона кривой к оси абсцисс, а следовательно, меньше и работа сжатия. Так как из трех видов рыб (ставриды, скумбрии, сардинеллы) наибольшая работа затрачивается на деформацию тела ставриды, то, следовательно, и жесткость тела ставриды будет наибольшей. Для некоторых видов рыб, например кильки, определить экспериментально работу сжатия при 5-миллиметровой деформации практически невозможно, потому что вся толщина тела рыбы не превышает 5 мм. В этом случае для получения соизмеримых значений жесткости можно пересчитать работу при 5-милиметровой, на работу при 5-миллиметровой деформации. На рис. 11 показана работа при деформации λ1 и λ.

Если предположить, что площадь фигуры ABC можно заменить треугольником, то:

(8)

Треугольники ABC и AB1C1 подобны и, следовательно:

(9)

(10)

тогда

(11)

Поскольку работа сжатия рыбы описывается площадью фигур S1 и S, то

(12)

где A –работа сжатия рыбы при 5-миллиметровой деформации; λ – 5-миллиметровая деформация; А1 – работа при деформации, меньшей 5-миллиметровой; λ1 –деформация, при которой определяется работа A1

Таким образом, представляется возможным сделать пересчет работы сжатия при любой деформации тела рыбы, меньшей 5-миллиметровой, на 5-миллиметровую деформацию.

Таблица 2

Рыба

Жесткость тела рыбы, Н/м2

Среднее квадратичн. отклонение, Н/м2

Коэффициент вариации, %

Килька

Мойва

Салака

Сардина

Сардинелла

Скумбрия

Ставрида

224

172

52

79

72

78

96

35

39,8

8,3

12,8

12

10

19

16

23

16

16,3

16

13

20

Эксперименты по определению жесткости тела рыбы проводили на рядовой рыбе, выловленной и замороженной на промысле, а затем размороженной перед проведением опытов. Температура тела рыбы была 8—15°С. В табл. 2 приведены данные о средней величине жесткости некоторых видов рыб (для каждого вида рыб было проведено 20—30 экспериментов).

Зная средние значения жесткости тела рыбы и среднее квадратичное отклонение, можно определить зону доверительных интервалов:

C = Cср ± t(P)σ (13)

Из приведенных данных о жесткости тела различных видов рыб, для которых работу определяли при 5-миллиметровой деформации без пересчета, наибольшей жесткостью обладает тело ставриды. Большая жесткость тела кильки и мойвы, обусловлена деформированием не только мышечной ткани, но и хребтовой кости, а следовательно, возрастанием сопротивления сжатии) и работы сжатия.

Предложенный критерий жесткости является объективным показателем структурно-механических свойств рыбы. Известно, что невозможно создать рыборазделочную машину, которая работала бы на сырье любого качества. В настоящее время всякое отклонение от нормы в работе рыбообрабатывающего оборудования объясняется, как правило, несовершенством конструкции машины. Контроль качества поступающего на обработку сырья не ведется и не может вестись, поскольку нет количественного критерия для оценки структурно-механических свойств рыбы. Для установления такого контроля за сырьем необходимо разработать экспресс-приборы, при помощи которых можно осуществлять такой контроль, и установить их непосредственно в цехах и на судах.

Установление границ пригодности сырья для переработки посредством критерия жесткости повысит ответственность добытчиков рыбы за своевременную ее переработку. Сортность рыбы также можно установить с помощью критерия жесткости.

По-видимому, конструкторы рыбообрабатывающего оборудования также смогут гарантировать надежную его работу на сырье, качество которого находится в определенных пределах, установленных при помощи критерия жесткости.

После замораживания, хранения и размораживания жесткость и модуль упругости рыбы уменьшались примерно на 10%. Если полагать, что рыбы подобны не только биологически, но и по структурно-механическим свойствам, то на основании экспериментальных данных, полученных при исследовании леща и судака, можно утверждать, что в результате замораживания и последующего размораживания жесткость рыбы и модуль упругости уменьшаются на 10%.

ИССЛЕДОВАНИЕ УСИЛИЙ ОТРЫВА ВНУТРЕННОСТЕЙ РЫБ

В процессе разделки рыбы с помощью машин, как правило, отрезается голова и удаляются внутренности. Удаление внутренностей происходит механически или гидровымывом. При проектировании рабочих органов машин для удаления внутренностей необходимо располагать данными об усилиях их отрыва, деформации и месте обрыва.

Исследования по определению усилий отрыва внутренностей и их деформации проводили на автоматическом прессе IS-5000 японской фирмы «Шимардзу». Для захвата рыбы за голову и туловище было спроектировано приспособление, показанное на рис. 12. Захват для головы (рис. 12, а) состоит из двух планок 1, 2, соединенных между собой шарниром 3. К планкам приварены щеки 4 и 5, имеющие криволинейные поверхности с насечками. Зажим головы рыбы осуществляется посредством сближения щек за счет винта 6 и гайки 7. Захват для туловища (рис. 12, б) состоит из двух планок 8, 9, облицованных резиной 10. Планки соединяются шарнирно 11 и сближаются посредством винта 12. В планках 8, 9 имеются отверстия, через которые пропускается игла, прокалывающая рыбу для более надежной ее фиксации. Хвостовые захваты имеют цилиндрическую форму. Хвостовые захваты для туловища рыбы крепятся к траверсе, хвостовые захваты для головы — к штанге, присоединенной к тензометрической головке.


Страница: