Мотонейрон, его строение и функции
Когда пиявка плывет, в каждом сегменте ее тела поочередно сокращаются то спинные, то брюшные продольные мышцы, так что сегмент выгибается то вверх, то вниз. Сокращение в каждом сегменте возникает немного позднее, чем в предыдущем сегменте. В результате по телу пиявки бежит волна, тело периодически изгибается и пиявка плывет. Как же устроено, что мышцы спины и брюшка сокращаются поочередно?
Рассмотрим только один сегмент. В каждом сегменте пиявки имеется свой ганглий, а в нем — около 200 нейронов. Часть из них — МН, управляющие продольными мышцами. — подобно многим другим беспозвоночным — есть и возбуждающие, и тормозные МН, причем тормозные МН тормозят не только мышцу, но и возбуждающие МН.
В ганглии находится так называемый генератор плавания, образованный четырьмя нейронами. При плавании на все эти нейроны приходит возбуждающий сигнал.
Как же работает эта система?
Схема на рис. 53, б совершенно симметрична, но реально при подготовке к плаванию какие-то нейроны начинают возбуждаться чуть раньше других. Пусть, например, первым возбудился нейрон 1, он сейчас же затормозит нейроны 3 и 4, и они будут «молчать». Нейрон 2 никем не тормозится и возбудится под действием общего сигнала вслед за нейроном 1. Когда это произойдет, затормозятся нейроны 1 и 4. Теперь нейрон 3 никем не тормозится и через некоторое время он заработает, затормозив нейроны 1 и 2. Таким образом, нейроны 1—4 будут поочередно возбуждаться. Когда будет возбуждаться нейрон 71, он будет тормозить тормозные МН спинных мышц, тогда возбуждающий МН заставит эти мышцы сократиться, и данный сегмент изогнется выпуклостью вниз. Когда будет возбуждаться нейрон 3, сегмент будет изгибаться в противоположную сторону.
Впервые такое «тормозное кольцо» придумал советский ученый В.Л. Дунин-Барковский. А лет через десять такое кольцо открыли у пиявки сотрудники Г. Стента — знаменитого генетика, который последние годы увлекся нейронными сетями беспозвоночных.
«Батареи» из нейронов
Мы могли бы рассказать вам еще немало о таких относительно простых схемах из нейронов, объясняющих, как отдергивается от прикосновения и уползает в норку дождевой червь, как плавает морской ангел, размахивая своими крыльями, как жует пищу улитка и т. д.
Однако перейдем к позвоночным. Дело в том, что, как уже упоминалось, в нервной системе позвоночных, как правило, выполнением любой функции занимаются не единицы или десятки, а тысячи и десятки тысяч клеток. В наших схемах фигурировали одиночные нейроны и одиночные рецепторы — каждый изображал несколько сходных клеток, имеющихся у беспозвоночных. А у позвоночных животных даже система, управляющая отдельной мышцей, более сложна: так, каждой крупной мышцей кошки или человека управляет своя группа мотонейронов — так называемый мотонейронный пул. В МН-пул входят тысячи нервных клеток, многочисленные разветвления аксонов которых оканчиваются на мышечных волокнах. Через мотонейронный пул и происходит управление работой мышцы, которая сама по себе тоже является довольно сложным механизмом. Например, изучая работу икроножной мышцы кошки, ученые обнаружили, что, когда кошка стоит, возбуждаются только такие мышечные волокна, которые обеспечивают относительно слабое напряжение мышцы, но зато могут работать длительное время, не утомляясь; когда кошка бежит рысью, добавляются и другие, более «сильные» волокна; когда же кошка пускается в галоп, спасаясь бегством, или прыгает за добычей, подключаются особые мышечные волокна, которые могут работать относительно недолго, но зато развивают большое усилие.
Как же нервная система обеспечивает управление таким сложным хозяйством? Оказывается, для этого вовсе не требуется «командовать» каждым мышечным волокном в отдельности: достаточно менять только силу сигнала, приходящего на пул, а нужный порядок включения мышечных волокон обеспечивается «геометрией» мотонейронов пула — их размерами и «топографией», т. е. расположением аксонов в мышце.
Оказывается, МН-пулы отличаются размерами, причем, чем крупнее нейрон, тем больше у него аксонных окончаний и тем большее число мышечных волокон он возбуждает. Самые же крупные МН имеют окончания именно на тех мышечных волокнах, которые нужны для «авральной» работы — кратковременной, но с развитием больших усилий.
Управляющие команды от верхних отделов мозга приходят по волокнам, которые равномерно распределены по всему МН-пулу. Если возбуждено небольшое число этих управляющих волокон, возбудятся только самые мелкие МН, и мышца будет развивать небольшое усилие. Чем большее число управляющих волокон будет возбуждено, тем большее число синапсов на МН будет активировано и тем более крупные МН включатся в работу. Таким образом, управляя только одним параметром — числом возбужденных нисходящих волокон, мозг включает в работу те мышечные волокна, которые нужны для выполнения требуемого движения.
Впервые гипотезу о том, что для управления МН-пулом мышцы природа использует именно геометрические различия размеров тел нервных клеток, высказал в 1965 г. американский ученый Хеннеман. В дальнейшем эта гипотеза была подтверждена разнообразными экспериментами и получила название «принцип величины».
У этого способа управления МН-пулом есть один недостаток: сигнал, необходимый для включения в работу больших МН, слишком велик для маленьких МН — он заставил бы их работать со слишком большой частотой, что может привести к гибели этих клеток.
Чтобы этого не происходило, в МН-пуле есть специальное защитное устройство — так называемые клетки Реншоу. К этим клеткам идут специальные отростки аксоновМН, причем в основном от больших МН. Клетки Реншоу — тормозные нейроны, их аксоны оканчиваются на МН, причем преимущественно на маленьких. Когда сигнал, приходящий на пул сверху, велик, к маленьким МН приходит, с одной стороны, этот слишком большой для них сигнал, а с другой стороны — тормозной сигнал от клеток Реншоу; эти сигналы, имеющие разные знаки, складываются, и маленькие МН работают в нормальном для них режиме,
Частотное кодирование и нейроны без импульсов
У обычного нейрона имеется возбудимая мембрана, которая в ответ на входной сигнал, достигший порога1 выдает выходной сигнал в виде ПД всегда одной и той же формы и амплитуды. Таким образом, ПД не несет никаких признаков входного сигнала. Одна и та же клетка в нервной системе может генерировать импульс и в ответ на свет и в ответ на звук, и если мы будем регистрировать импульсы в ее аксоне, мы никаким способом не сможем узнать по какой причине они возникли
Получается, что нейрон при передаче сигналов «обедняет» информацию. Правда, оказывается, что хотя нейрон ничего не может сообщить об источниках входных сигналов, он может сообщить об их силе. Как это делается? Амплитуда входного сигнала — это сумма всех синаптических потенциалов, создаваемых активными синапсами. Пусть во время действия сигнала амплитуда его не меняется. Тогда через мембрану нейрона все время будет течь примерно постоянный синаптический ток. Легко сообразить, что чем больше ток, идущий через мембрану, тем с большей частотой будет работать нейрон. Действительно, после каждого очередного импульса мембрана нейрона гиперполяризуется, так как открываются калиевые каналы. Чем больше ток, текущий через мембрану нейрона тем быстрее он возвратит его потенциал к пороговому значению. Таким образом, чем больше амплитуда входного сигнала, тем выше частота выходных импульсов. Этот способ передачи информации называют частотным кодированием.