Молекулярные механизмы генетической изоляции
Рефераты >> Биология >> Молекулярные механизмы генетической изоляции

Первые два автора (Медников и Шубина) разработали метод, позволяющий использовать рестриктазный анализ ядерной ДНК. После предварительного удаления уникальных последовательностей повторы подвергались ферментативному расщеплению и разделению электрофорезом. Этим методом была исследована ДНК тихоокеанских лососей (кеты, горбуши, чавычи, нерки, кижуча и симы) в расчете отыскать показатель, который позволил бы отличить одно нерестовое стадо рыб от другого (т.е. заходящих на нерест в разные реки). Но результат оказался противоположным: набор рестриктазных фрагментов повторяющихся последовательностей ДНК для каждого вида рыб был специфичным и не зависел от пола, возраста и принадлежности к нерестовому стаду. Напрашивался вывод, что найден абсолютный критерий вида — мечта каждого систематика.

В принципе любой вид дальневосточных лососей, вместо длинного морфологического описания, можно охарактеризовать спектром рестриктазных фрагментов. Для кеты он выглядит как Msp1 — 100, 250, 400, 550, 650, 800; Pst1 — 100, 250, 400, 550, 650, 800, 1700; Alu1 — 100, 250, 400, 550, 650, 800 (аббревиатурой обозначены названия рестриктаз, числами — количество пар нуклеотидов, т.е. длина фрагментов). Примечательно, что этот спектр был одинаковым у кеты и из рек Приморья, и из Анадыря. У горбуши он другой: Msp1 — 200, 420, 640; Pst1 1250, 1300, 1700, 2350, 2650; Alu1 — 250, 350, 520, 630, 680.

Результат нас не только удивил, но и огорчил, потому что мы искали генетические различия стад внутри одного вида. Да и в качестве видового критерия спектр оказался мало пригоден, так как его определение по нашей методике было довольно трудоемким. Это, кстати, ахиллесова пята только что разработанных новых методов. Впервые проложенная дорога оказывается самой трудной и нередко забывается.

Наша идея воскресла после работы В.В.Гречко (Институт молекулярной биологии РАН) и А.Н.Федорова (Институт молекулярной генетики РАН), которые предложили более простой способ (он назван методом таксонопринтов), позволяющий изучать распределение фрагментов повторяющихся последовательностей. По этому методу ДНК гидролизуют короткощепящими рестриктазами без отделения уникальных последовательностей от повторяющихся, а образовавшиеся полинуклеотиды метят радиоактивным фосфором (32Р) по концевым остаткам. После этого смесь разделяют электрофорезом, выявляют фрагменты с помощью радиоавтографии и в итоге получают их спектр, или таксонопринт.

Результаты исследования объектов методом таксонопринтов и нашим прежним способом оказались сходными. Какие же молекулярные характеристики вида и популяций нам удалось получить?

Таксонопринты отдельных популяций внутри вида (от рыб и ящериц до человека) идентичны. Не отличаются они и в большинстве географически изолированных популяций. Например у пустынных ушастых ежей спектр фрагментов ДНК одинаков, независимо от того, обитают животные в окрестностях Ашхабада, Кара-Колы или Ташкента [1]. Идентичны таксонопринты кеты, нерестящейся в реках от Анадыря до Приморья; не различаются по этому молекулярному признаку и расы человека.

Но в некоторых случаях спектр фрагментов ДНК внутри одного вида имеет небольшие отличия, к примеру, у хорошо известной лососевой рыбы гольца, распространенной от Северной Европы до Дальнего Востока, а также в Америке. Существуют две формы этого вида — жилая, т.е. пресноводная, и проходная — только заходящая в реки во время нереста. Везде, где есть обе формы (в реках Шпицбергена, на севере Евразии от Норвегии до Таймыра), их таксонопринты идентичны. Но в географически изолированных популяциях Восточной Сибири, где обитают только жилые гольцы, их ДНК уже отличается одним-двумя фрагментами. Это — гольцы из озера Лабынкыр, из озер Забайкалья и Чукотки, а также дальневосточный голец — мальма. Можно заключить, что в географически изолированных ареалах идет постепенное аллопатрическое видообразование [2].

Иное дело, если близкие виды обитают совместно — их таксонопринты отличаются довольно резко. Такие “спектры” различны, например, у живущих в Подмосковье обыкновенного и белогрудого ежей. Мало сходства и в наборе фрагментов ДНК двух видов гольцов, населяющих чукотское озеро Эльгыгытгын,— арктического гольца и малоротой палии, которая, кстати, и по морфологическим признакам отличается от прочих гольцов настолько, что ее выделили в отдельный род Salvethymus.

Все это приводит к мысли, что у симпатрических видов, обитающих совместно и, видимо, совместно возникших, дивергенция быстро проявляется в виде различий таксонопринтов. Но они остаются близкими или даже идентичными у аллопатрических видов, чьи ареалы разделены расстоянием. Хороший пример — американский бизон и европейский зубр. Они произошли от одного вида (Bison priscus), в свое время населявшего огромную территорию — от современной Британии до восточного берега Северной Америки. После того как материки разделились, потомки прежде единого вида накопили немало морфологических различий, но таксонопринты остались идентичными. Кстати, бизон и зубр свободно скрещиваются, и гибриды характеризуются гетерозисом — гибридной мощностью. Легко скрещиваются в неволе, а также на стыках мест обитания и дают плодовитое потомство горные бараны — европейский муфлон, переднеазиатский уриал и центральноазиатский архар, населяющие разные горные системы. Таксонопринты этих видов практически одинаковы [3]. Похоже, что такие виды генетически не изолированы, хотя имеют много различающихся морфологических черт, по которым систематики считают их самостоятельными.

Возникает естественный вопрос: для чего же в геноме существуют повторяющиеся последовательности, которые выявляются методом таксонопринтов? На наш взгляд, эти участки ДНК играют роль маркеров, т.е. распознают гены, которые должны включаться в действие в развивающейся зиготе. Запускают их регуляторные белки, имеющиеся в цитоплазме оплодотворенной яйцеклетки. В сперматозоидах цитоплазмы нет, поэтому нет и этих белков. Если такие фрагменты ДНК одинаковы или очень близки у отца и матери, отцовские и материнские хромосомы работают совместно, обеспечивая нормальное развитие зиготы.

А если различаются? Тогда регуляторные белки яйцеклетки с трудом узнают гены, привнесенные в нее спермием, и их работа оказывается заторможенной, зигота перестает развиваться, гибнет, и мы констатируем случай генетической межвидовой изоляции. Генетики хорошо знают так называемый материнский эффект, за счет которого отцовские гены разных видов или далеко разошедшихся разновидностей включаются в работу поздно или не включаются вообще. С точки зрения классической генетики — это нонсенс, ведь хромосомы обоих родителей равноправны.

Возможен относительно простой эксперимент для подтверждения материнского эффекта. Если в оплодотворенную яйцеклетку межвидового гибрида с помощью микроманипулятора ввести цитоплазму яйцеклетки отцовского вида, материнский эффект будет снят: регуляторные белки цитоплазмы отцовской линии активируют гены отцовского генома. Этим же способом можно стимулировать развитие межвидовых гибридов, которые обычно не возникают. Наконец, цитоплазмой яйцеклетки можно активировать исходные гены для получения клонированного зародыша из недифференцированной соматической клетки.


Страница: