Механика микрочастиц
Рефераты >> Биология >> Механика микрочастиц

Этот принцип является фундаментальным, определяющим границы применимости классических представлений при опи­сании свойств микромира.

Принцип дополнительности (Бор)

Характеризует двойственность свойств Природы, противо­речивость которых только кажущаяся, а неопределенность ог­раничена лишь возможностями измерительных приборов или методов подхода (см. принцип Гейзенберга) фактически эти па­раметры лишь дополняют друг друга. Как-то: дуализм и нео­пределимость параметров элементарных частиц в физике; целостность и делимость живой природы в биологии; преем­ственность даже отвергнутых концепций в науке и т. д.

На сегодняшний день формирование квантовой и иных уни­версальных теорий не завершено, поэтому укажем лишь основ­ные, отправные ее принципы.

Принцип эквивалентности (Эйнштейна)

Поле сил инерции оказывает на все физические процессы такое же влияние, как и поле тяготения подобной структуры. Таким образом определяется равенство ускорения всех тел в одном и том же гравитационном поле, то есть эффекты тяго­тения и инерции до известной степени эквивалентности.

Принцип относительности (Эйнштейна)

Этот принцип справедлив и в оптике, и электродинамике, и других разделах физики и звучит так: любой процесс протекает одинаково в изолированной материальной системе, равномер­но прямолинейно движущейся, или законы физики имеют оди­наковую форму во всех инерционных системах отсчета. Все системы отсчета были признаны равнозначными, и принцип относительности стал универсальным.

Принцип запрета (Паули)

В данном квантовом состоянии, может, находится только один электрон. Это логически вытекает из модели атома, пред­ложенной Бором: вокруг ядра электроны находятся на кольце­вых орбитах, а положение орбиты зависит от энергетического состояния электрона. На одном кольце может быть не более двух электронов с противо спинами, то есть с таким зарядовым чис­лом они взаимодействуют с окружающим магнитным полем.

Этот принцип позволил не только обосновать периодичес­кую систему элементов, но и объяснить насыщаемость элект­ронных оболочек, свойства пара- и диамагнетиков, квантовую химию и др.; построить современную теорию элементарных ча­стиц и квантовую теорию поля. А на базе квантовой механики затем создали целый ряд современных технологий.

Принцип соответствия

Электроны в атомах движутся по законам, отличным от законов классической механики и электродинамики, но в предельном случае они идентичны.

Вариационный принцип

Устанавливает связь между свойствами пространства-времени и законами сохранения.

Принцип инвариантности

Смещение во времени и в пространстве не влияет на протекание физических процессов. Здесь речь о переносах начала координат и начале отсчета времени.

Принцип суперпозиции

Этот принцип фиксирует независимость полей взаимо­действия при их наложении. Так, если в данную точку прихо­дят две волны одинаковой частоты, то результирующее поле равно их геометрической сумме.

Принцип положительной обратной связи

Неравномерность и неустойчивость, возникающая в от­крытой системе, вследствие взаимодействия системы со средой со временем не ликвидируется, а наоборот, усили­вается. Это приводит, в конечном счете, к разрушению пре­жних симметрии и, как следствие, к возникновению новой структуры.

Принцип корреляций (Кювье)

Ни одна часть организма (системы) не может меняться без соответствующего изменения других частей.

Подтверждение основных принципов является главной за­дачей экспериментальных и теоретических исследований в об­ласти элементарных частиц. Порядок в их многообразии стал наводиться после открытия новых данных и новых типов сим­метрии, а также математического анализа на основе теории групп.

Элементарные частицы — основа мироздания, но путь от частных теорий до всеобщей еще достаточно протяжен.

Из классических теорий наиболее близки к фундаменталь­ным описывающие законы сохранения Ньютона, Майера, Джо­уля, Гельмгольца, Фарадея, Пастера.

Однако законы сохранения, к примеру электрического заря­да, носят совсем иную природу, чем законы сохранения энергии, импульса или момента импульса. Так, закон сохранения энергии есть прямое следствие "однородности" времени (законы При­роды не меняются со временем). Из однородности простран­ства (независимость законов Природы относительно переноса начала координат) следует закон сохранения импульса. Нако­нец, из однородности пространства (повороты системы отсче­та) следует закон сохранения момента импульса .

При обобщении экспериментальных данных было установ­лено, что, кроме закона сохранения электрического заряда, мож­но ввести законы сохранения для новых квантовых чисел. В первую очередь они должны проявиться в реакциях взаимодей­ствующих частиц.

Общие законы Природы должны описываться уравнениями, справедливыми во всех системах координат — принцип общей ковариантности, то есть эти уравнения не меняют своей формы со сменой системы координат (если даже одна движется с уско­рением по отношению к другой).

Наиболее фундаментальной областью исследований являет­ся область, связанная со структурой материи и выяснения зако­нов взаимодействия составляющих ее частиц.

2. ОСНОВНЫЕ ПОНЯТИЯ «ЭЛЕМЕНТАРНОСТЬ», «ПРОСТОЕ-СЛОЖНОЕ», «ДЕЛЕНИЕ».

Утверждение «система состоит из элементов» всегда озна­чало, что эта система представляет собой объект, состоя­щий из частей, меньших по величине или по массе, но со­храняющих внутри этой системы определенную индивидуаль­ность, самостоятельность (конечно, ограниченную взаимо­действием этих частей в рамках включающей их большей си­стемы). К субъядерным частицам такое понимание неприме­нимо. Здесь следует говорить не о том, что одни частицы со­стоят из других, а о том, что они способны превращаться друг в друга, порождать друг друга в различных процессах взаимо­действия. Протон, например, можно получить в результате стол­кновения нейтрона и я (пи)-мезона или X (лямбда)-гиперона и К-мезона, но это не значит, что в структуру всех этих частиц входит протон, что они «состоят из» протонов.

Даже в тех случаях, когда происходит распад частицы, нельзя говорить, что конечные частицы более элементарны, чем рас­павшаяся, что конечные частицы входили в состав исходной. Это было бы верно, если бы энергия связи (так называемый дефект массы) была значительно меньше масс участвующих в реакции частиц, а частицы-компоненты не теряли бы своей индивидуальности внутри образуемого ими целого. В случае субъядерных частиц дефект массы всегда оказывается больше массы одной или даже нескольких частиц-компонент, а при квантовых (так называемых виртуальных) распадах значитель­но превосходит массу исходной, «материнской» частицы. Так, масса виртуальных частиц, образующихся при диссоциации п-мезона на пару протон+нейтрон, более чем на порядок превышает массу самого п -мезона. В этом отношении п- мезон ради­кально отличается, например, от дейтрона (ядра атома тяже­лого водорода), дефект масс которого составляет всего лишь около 0,001 его массы; поэтому дейтрон действительно можно считать состоящим из протона и нейтрона, потому что они оста­ются такими же, как и в свободном состоянии. А вот частицы- компоненты внутри п -мезона почти «растворяются» в энергии их взаимодействия.


Страница: