Метаболизм как основа жизнедеятельности клетки
К о д о д н о з н а ч е н. Кроме триплетности, генетический код наделен рядом других характерных свойств. Его кодоны не перекрываются, каждый кодон начинается с нового нуклеотида, и ни один нуклеотид не может прочитываться дважды. Любой кодон соответствует только одной аминокислоте.
К о д у н и в е р с а л е н. Генетическому коду свойственна универсальность для всех организмов на Земле. Одинаковые аминокислоты кодируются одними и теми же триплетами нуклеотидов у бактерий и слонов, водорослей и лягушек, черепах и лошадей, птиц и даже человека. Несколько отличаются (на 1-5 кодонов) только коды митохондрий некоторых организмов, ряда дрожжей и бактерий.
Ошибка хотя бы в одном триплете приводит к серьезным нарушениям в организме. У больных серповидной анемией (их эритроциты имеют не дисковую, а серповидную форму) из 574 аминокислот белка гемоглобина одна аминокислота заменена другой в двух местах. В результате белок имеет измененную третичную и четвертичную структуру. Нарушенная геометрия активного центра, присоединяющего кислород, не позволяет гемоглобину эффективно справляться со своей задачей — связывать кислород в легких и снабжать им клетки организма.
Транскрипция. Синтез белка происходит в цитоплазме на рибосомах. Генетическую информацию от хромосом ядра к месту синтеза переносят иРНК:
ДНК – и РНК - белок
Информационная РНК синтезируется на отрезке одной из нитей ДНК как на матрице, хранящей информацию о первичной структуре конкретного белка или группы белков, выполняющих одну функцию. В основе синтеза лежит принцип комплементарности: напротив Цднк встает Грнк, напротив Гднк — Црнк, напротив Аднк — Урнк, напротив Тднк — Арнк. Затем мономерные звенья связываются в полимерную цепь. Таким образом, иРНК становится точной копией второй нити ДНК (с учетом замены Т- У). Молекула иРНК имеет одноцепочечную структуру, она в сотни раз короче ДНК.
Процесс перенесения генетической информации на синтезируемую иРНК носит название транскрипции. Перед началом каждого гена или группы однофункциональных генов расположена последовательность нуклеотидов, называемая инициатором (содержит кодон АУГ). В этой последовательности есть участок (промотор) для присоединения фермента РНК-полимеразы, осуществляющего транскрипцию. Полимераза распознает промотор благодаря химическому сродству. В конце матрицы синтеза находится стоп-кодон (один из трех в таблице), или терминатор.
В ходе транскрипции РНК-полимераза в комплексе с другими ферментами разрывает водородные связи между азотистыми основаниями двух нитей ДНК, частично раскручивает ДНК и производит синтез иРНК по принципу комплементарности. На одной ДНК "работают" сразу несколько полимераз.
Готовая молекула иРНК после небольшой перестройки связывается в комплекс со специальными белками и транспортируется ими через ядерную оболочку на рибосомы. Эти белки выполняют и другую функцию — они защищают иРНК от действия различных ферментов цитоплазмы. В прокариотической клетке ДНК не отделена от цитоплазмы, и синтез белков рибосомы начинают еще во время транскрипции.
Транспортные РНК. Необходимые для синтеза белков аминокислоты всегда имеются в составе цитоплазмы. Они образуются в процессе расщепления лизосомами белков. Транспортные РНК связывают аминокислоты, доставляют их на рибосомы и производят точную пространственную ориентацию аминокислот на рибосоме.
Рассмотрим устройство тРНК, позволяющее ей успешно выполнять свои сложные функции. В цепочке, состоящей из 70-90 звеньев, имеется 4 пары комплементарных отрезков из 4-7 нуклеотидов — А, Б, В и Г. Комплементарные участки связываются водородными связями попарно (как в молекуле ДНК). В результате нить тРНК "слипается" в четырех местах с образованием петлистой структуры, напоминающей лист клевера. В верхушке "листа" располагается триплет, код которого комплементарен кодону иРНК, соответствующему транспортируемой аминокислоте. Так, если в иРНК код аминокислоты валина ГУГ, то на вершине валиновой тРНК ему будет соответствовать триплет ЦАЦ. Комплементарный триплет в тРНК называют антикодоном.
Специальный фермент распознает антикодон тРНК, присоединяет к "черенку листа" определенную аминокислоту (в нашем примере — валин), и затем тРНК перемещает ее к рибосоме. Каждая тРНК транспортирует только свою аминокислоту.
Синтез белковой цепи на рибосоме
Матричные процессы составляют основу способности живых организмов к воспроизведению. В клеточном ядре происходит удвоение ДНК. Новая молекула воспроизводится на матрице старой и представляет собой ее точную копию. Информационная РНК синтезируется на матрице ДНК в виде точной копии одного из участков ДНК. Далее на матрице иРНК происходит синтез белков.
Трансляция. Перевод последовательности нуклеотидов иРНК в последовательность аминокислот синтезируемых белков называют трансляцией.
В активном центре рибосомы размещаются два триплета иРНК и соответственно две тРНК. Рибосома перемещается по иРНК не плавно, а прерывисто, триплет за триплетом. На каждом шаге присоединяется новая аминокислота. Транспортные РНК перемещаются со своей аминокислотой к рибосоме и "примеряют" свой антикодон к очередному кодону иРНК, находящемуся в активном центре (комплементарные нуклеотиды хорошо подходят друг другу, между ними возникают водородные связи). Если антикодон оказывается не комплементарным, то тРНК удаляется в цитоплазму к другим рибосомам. Если же он оказывается комплементарным, то тРНК присоединяется к кодону водородными связями.
Далее особый фермент рибосомы подсоединяет синтезируемую полипептидную цепь к "прибывшей" аминокислоте. Ее транспортная РНК продолжает удерживать всю формирующуюся белковую цепь на кодоне иРНК до прихода следующей тРНК. Освободившаяся тРНК перемещается в цитоплазму "на поиск" аминокислот. Рибосома перескакивает на следующий триплет иРНК, и процесс повторяется. Интервал между перескакиваниями продолжается не более 1/5 — 1/6 с, а вся трансляция среднего белка — 1-2 минуты.
На одной нити иРНК "трудятся" сразу несколько рибосом. На иРНК, содержащей информацию о белке гемоглобине, размещается до 5 рибосом, на некоторых других иРНК — до 20 рибосом. Когда в активном центре рибосомы оказывается один из трех триплетов, кодирующих знаки препинания между генами, синтез белка завершается.
Освободившаяся рибосома отправляется на другую иРНК. Рибосомы универсальны и могут синтезировать полипептиды по любой матрице иРНК. Субъединицы рибосом соединяются только для синтеза белка, после окончания синтеза они вновь разъединяются.
Сворачивание в спираль и приобретение третичной структуры происходит по мере синтеза белковой цепи, поэтому зачастую невозможно восстановление денатурированных белков со сложной пространственной структурой, даже если их первичная структура сохранена. Сворачивание белковой цепи целой молекулы происходит по-иному, и белок оказывается неактивным.
Многие белки — например, пищеварительные ферменты — очень активны и способны переварить саму клетку, поэтому синтезируемые молекулы белков сразу попадают в эндоплазматическую сеть (к мембране которой прикреплены синтезирующие белки рибосомы) и по ее каналам перемещаются к комплексу Гольджи, а от него в тот участок клетки или в ту часть организма, где требуется этот вид белков. Синтез небелковых соединений клетка осуществляет в два этапа. Сначала рибосомы производят трансляцию специфического белка-фермента. Затем при его участии образуется молекула необходимого соединения — углевода, жиров и т.д. Сходным образом синтезируются и другие соединения: витамины, небелковые гормоны и пр.