Метаболизм как основа жизнедеятельности клетки
Рефераты >> Биология >> Метаболизм как основа жизнедеятельности клетки

Фотосинтез в хлоропластах весьма эффективен: он дает в 30 раз больше АТФ, чем кислородный гликолиз в митохондриях тех же растений.

Таким образом, во время световой фазы фотосинтеза происходят следующие главные процессы: выделение в атмосферу свободного кислорода, синтез АТФ и образование атомарного водорода.

Протекание дальнейших реакций может происходить и в темноте, потому носит название темновой фазы.

Т е м н о в а я ф а з а. Реакции этой фазы происходят в строме хлоропласта при участии атомарного водорода и АТФ, образовавшихся в световой фазе, а также ферментов, восстанавливающих СО2 до простого сахара — триозы (глицеральдегида) — и синтезирующих из нее глюкозу:

6СО2 + 24Н = С6Н12О6(глюкоза) + 6Н2О

Для образования одной молекулы глюкозы требуется 18 молекул АТФ. Комплекс реакций темновой фазы, осуществляемых ферментами (и коферментом НАД), носит название цикла Кальвина.

Кроме глюкозы, из триозы могут синтезироваться жирные кислоты, аминокислоты и пр. Углеводы и жирные кислоты далее транспортируются в лейкопласты, где из них формируются запасные питательные вещества — крахмал и жиры.

С наступлением темноты растения продолжают процесс фотосинтеза, используя запасенные на свету соединения. Когда этот запас исчерпывается, прекращается и фотосинтез. В ночной темноте растения напоминают по типу обмена веществ животных: они поглощают кислород из атмосферы (дышат) и окисляют при помощи его запасенные днем питательные вещества. На дыхание растения используют в 20-30 раз меньше кислорода, чем выделяют в атмосферу в процессе фотосинтеза.

Количество энергии, производимой растениями, значительно превышает количество тепла, выделяющегося при сжигании всем населением планеты горючих полезных ископаемых. Ежегодно растительность планеты дает 200 млрд. т кислорода и 150 млрд. т органических соединений, необходимых человеку и животным.

Хемосинтез. Большинство бактерий лишены хлорофилла. Некоторые из них являются хемотрофами: для синтеза органических веществ они используют не энергию света, а энергию, высвобождающуюся при окислении неорганических соединений. Такой способ получения энергии и синтеза органических веществ назвали хемосинтезом (греч. chemia химия). Явление хемосинтеза открыто в 1887 г. русским микробиологом С. Н. Виноградским.

Н и т р и ф и ц и р у ю щ и е б а к т е р и и. В корневищах растений, главным образом, бобовых, живут особые клубеньковые бактерии. Они способны усваивать недоступный растениям атмосферный азот и обогащать почву аммиаком. Нитрифицирующие бактерии окисляют аммиак клубеньковых бактерий до азотистой кислоты и далее — азотистую до азотной. В результате растения получают соли азотной кислоты, необходимые для синтеза аминокислот и азотистых оснований.

В о д о р о д н ы е б а к т е р и и также широко распространены в почвах. Они окисляют молекулы водорода, образующиеся в результате бескислородного окисления органических останков различными микроорганизмами:

2Н2 + О2 = 2Н2О

Ж е л е з о б а к т е р и и используют энергию, высвобождающуюся при окислении двухвалентного железа до трехвалентного (закисные соли до окисных).

С е р о б а к т е р и и обитают в болотах и "питаются" сероводородом. В результате окисления сероводорода выделяется необходимая для жизнедеятельности бактерий энергия и накапливается сера. При окислении серы до серной кислоты высвобождается еще часть энергии. Суммарный выход энергии составляет существенную величину — 666 кДж/моль. Огромное количество серобактерий обитает в Черном море. Его воды, начиная со стометровой глубины, насыщены сероводородом.

Гетеротрофный тип обмена веществ. Человек и животные не способны синтезировать необходимые для жизнедеятельности органические вещества из неорганических и вынуждены поглощать их с пищей. Такие организмы называют гетеротрофами (греч. heteros другой). К гетеротрофам относятся также большинство бактерий и грибы. Вещества, поступившие с пищей, разлагаются в организмах животных на простые углеводы, аминокислоты, нуклеотиды, из которых далее синтезируются высокомолекулярные соединения, необходимые для конкретного вида существ в конкретной фазе жизненного цикла. Часть поступивших с пищей молекул расщепляется до конечных продуктов, а высвобождающаяся энергия используется в процессах жизнедеятельности. Некоторое количество энергии рассеивается в виде теплоты, служащей для поддержания температуры тела.

Многие одноклеточные водоросли имеют миксотрофное (смешанное) питание. На свету они фотосинтезируют, а в темноте переходят к фагоцитозу, т.е. становятся гетеротрофами.

Пластический обмен. Биосинтез белков. Синтез и РНК

В процессах метаболизма реализуется наследственная информация. Клетка синтезирует только те вещества, которые записаны в ее генетической программе. Каждой группе клеток присущ свой комплекс химических соединений. Среди них особенно важными для организма являются белки.

Многие функции и признаки организма определяются его набором белков. Белки-ферменты расщепляют пищу, отвечают за поглощение и выделение солей, синтезируют жиры и углеводы, производят множество других биохимических превращений. Белки определяют цвет глаз, рост — словом, внешнюю специфичность организмов. Большинство белков, выполняющих одни и те же функции, несколько различны даже у особей одного и того же вида (к примеру, белки групп крови). Но некоторые однофункциональные белки могут иметь сходное строение у далеких групп организмов (к примеру, инсулин собаки и человека).

В процессе жизнедеятельности белковые молекулы постепенно разрушаются, теряют свою структуру — денатурируют. Их активность падает, и клетки заменяют их новыми. В организмах постоянно происходит синтез необходимых белков.

иосинтез белковых молекул — сложный ферментативный процесс, начинающийся в ядре и заканчивающийся на рибосомах. Центральную функцию в нем выполняют носители генетической информации — нуклеиновые кислоты ДНК и РНК.

Генетический код. Последовательность нуклеотидов ДНК задает последовательность аминокислот в белках — их первичную структуру. Молекулы ДНК являются матрицами для синтеза всех белков.

Отрезок ДНК, несущий информацию о первичной структуре конкретного белка, называют геном. Соответствующую последовательность нуклеотидов — генетическим кодом белка.

Идею о том, что наследственная информация записана на молекулярном уровне, а синтез белков идет по матричному принципу, впервые высказал еще в 1920-х годах русский биолог Н. К. Кольцов. В настоящее время код ДНК полностью расшифрован. В этом заслуга известных ученых: Г. Гамова (1954), а также Ф. Крика, С. Очоа, М. Ниренберга, Р. Холи и К. Хорана (1961-65). Значительную часть свойств генетического кода установил английский физик Ф. Крик, исследуя бактериофагов.

К о д т р и п л е т е н. Каждая аминокислота в генетическом коде задается последовательностью трех нуклеотидов — триплетом, или кодоном. Различных нуклеотидов в ДНК четыре, следовательно, теоретически возможных кодонов — 64 (43). Большинству аминокислот соответствует от 2 до 6 кодонов — код, как говорят, вырожден. Чем чаще аминокислота встречается в белках, тем, как правило, большим числом кодонов она кодируется. Оставшиеся три кодона вместе с кодоном метионина (АУГ) служат знаками препинания при считывании информации — указывают начало и конец матриц конкретных белков. Если белок имеет несколько полимерных цепей (образующих отдельные глобулы), то знаки препинания выделяют полипептидные звенья. Считывание каждого звена происходит непрерывно, без знаков препинания и пропусков — триплет за триплетом.


Страница: