Клеточные и молекулярные механизмы депривационных изменений
Рефераты >> Биология >> Клеточные и молекулярные механизмы депривационных изменений

Эксперименты с искусственным косоглазием показывают, что для того, чтобы соединения между нейронами поддерживались на функциональном уровне, нейроны должны каким-то образом определять, какой из двух входящих сигналов находится в фазе, а какой — нет. Регистрации сигналов от кортикальных нейронов показывают, что нейроны способны отвечать со значительно большей амплитудой на два исходящих синоптических сигнала, которые поступают с определенной синхронностью. Каким образом это может привести к тому, что в результате одни нервные окончания остаются, а другие подвергаются ретракции, остается неизвестным.

Роль трофических веществ в поддержании нейронных связей

Отдельным направлением исследований является оценка того, каким образом трофические вещества, секретируемые постсинаптически ми клетками-мишенями, участвуют в поддержании нейронных связей. Мафей с коллегами первыми показали в своих экспериментах, что нейротрофины, такие как ФРН (фактор роста нерва, NGF, nerve growth factor) и МНФ (мозговой нейротрофический фактор, BDNF, brain-derived neurotrophic factor), могут предотвращать эффекты монокулярной депривации в развивающейся зрительной системе крыс. Их результаты дают основания предполагать, что волокна ЛКТ конкурируют за факторы роста.

Предположение авторов заключалось в том, что аксоны, не получая достаточного количества факторов роста от клеток мишеней, теряют с ними связи и подвергаются ретракции, как это происходит в других системах. В связи с этим был проведен ряд опытов, в которых в коре крысы создавали высокую или избыточную концентрацию ФРН либо при помощи непосредственного введения, либо при помощи секреции из имплантированных специально культивированных шванновских клеток. В этих условиях монокулярная депривация больше не приводила к уменьшению размера колонок, однако кортикальные клетки по прежнему получали управление от обоих глаз. Введение антител к ФРН предотвращало эти эффекты.

Более того, в нормально развивающейся зрительной системе антитела к ФРН вызывали уменьшение клеток в размерах и продлевали критический период, как должно происходить в случае блокады нормального действия трофических факторов и ФРН.

Хотя постепенно появляется все больше информации о локальных различиях в молекулярном окружении и о некоторых свойствах самих нейронов, до настоящего времени не существует полного и обстоятельного объяснения механизмам критического периода и пластичности на молекулярном уровне.

Таким образом, мы пока не можем объяснить, почему соединения в зрительной коре являются более уязвимыми, чем в сетчатке или в спинном мозге.

Разделение сигналов без их конкуренции

В экспериментах, описанных нами до сих пор, основным принципом было то, что два глаза конкурируют друг с другом за связи и территорию в ЛКТ и в слое 4 первичной зрительной коры, исходно имея примерно равные возможности. Ракич с коллегами использовали другой подход для изучения того, как соседние группы клеток с хорошо определенными свойствами распределяют свои окончания и определяют свои мишени в процессе развития без конкуренции друг с другом.

Как мы уже писали выше, крупноклеточная (M, magnocellular) и мелкоклеточная (Р, parvocellular) системы располагаются в различных слоях ЛКТ и зрительной коры. При окраске отдельных аксонов M и Ρ клеток по мере того, как происходит их рост в ЛКТ во время развития, было показано, что аксоны извне приходят строго в M и Ρ слои, где они образуют характерные неперекрывающиеся паттерны ветвления. M волокна заканчиваются только в слоях 1 и 2 ЛКТ, а Р волокна — в слоях 3, 4, 5 и 6 (рис. 3), без перекрытия.

Таким образом, когда два глаза образуют свои связи, можно предположить, что конкуренция играет основную роль в разделении поступающей от них сходной информации об окружающем мире. На самом деле M и Р системы переносят абсолютно различные виды информации. Их соединения (подобно тем, что происходят при образовании пятен и полосок в зрительной зоне 2) образуются по другим принципам, в которых конкуренция играет далеко не ведущую роль.

Другим примером связей, которые образуются без участия конкуренции, является развитие карт ориентации в зрительной коре котенка. Стоит отметить, что результаты подобного рода укрепляют уверенность в том, что не все, что происходит в нервной системе, или даже на рынке может быть списано на простую конкуренцию.)

Критические периоды развития слуховой системы

Результаты, полученные при изменении восприятия зрительной информации у котят и незрелых детенышей обезьяны, имеют большое количество приложений для понимания функционирования нервной системы. Интересным примером является то, как происходит адаптация слуховой системы во время ее критических периодов, что показано в экспериментах Кнудсена и его коллег на амбарной сове (barn owl). Ранний слуховой опыт формирует особенности настройки нейронов четверохолмия амбарной совы в зависимости от частоты. Следующий пример показывает, как изменения в восприятии зрительной информации в ранние периоды жизни могут повлиять на представление слуховой системы в головном мозге амбарной совы.

ОтНейронаКМозгу%20541-640.files/image086.jpg

Рис. 3. Отсутствие конкуренции за территорию между крупно- и мелкоклеточными аксонами клеток сетчатки и ЛКТ. Помеченные нервные окончания волокон зрительного нерва в слое M и Ρ ЛКТ обезьяны продолжают расти на протяжении с 95 до 135 дня эмбриональной жизни (с Е95 до Е135). С самого начала развития аксоны ограничены только своими собственными слоями и не распространяются в соседние слои ретракции. Таким образом, МиР волокна не конкурируют за пространство.

Слуховой и зрительный опыт у новорожденных амбарных сов

Сова способна поворачивать голову точно в направлении того места, откуда раздается звук (так как она должна ловить слабо пищащую мышь). Горизонтальная локация звука осуществляется при помощи измерения разницы во времени между правым и левым ухом (interaural time difference) — то есть по задержке между звуковыми волнами, поступающими сначала в одно ухо, а потом — в другое. (Сова также может принимать во внимание интенсивность звука в обоих ушах для оценки вертикальной позиции: асимметрично расположенные группы перьев на ее морде отражают звук, идущий сверху, в одно ухо, а снизу — в другое.)

Другой возможностью для совы определить положение и траекторию движения мыши является зрение. На рис. 4А показано, что у нормальной взрослой совы нейронные карты пространства для зрения и слуха (neural maps for visual and auditory space) согласованы в одном слое зрительной области четверохолмия (tectum), которая соответствует зоне верхнего двухолмия у млекопитающих. Подобное картирование осуществляется при помощи измерения ответов отдельных нейронов четверохолмия на звуки, идущие от различных участков, и световые стимулы, предъявляемые в различных участках зрительного поля.

В серии экспериментов совят выращивали со смещенными на 23 градуса вправо или влево зрительными полями, для чего на глаза им помешались специальные призмы (рис. 5.А). Это сдвигало изображение зрительного поля на сетчатке и, следовательно, его проекцию в четверохолмии таким образом, что уже не было согласования между зрительной и слуховой картами (рис. 5.В, С). На протяжении следующих 6-8 недель происходило смещение слуховой пространственной карты, и она снова соответствовала зрительной карте. Пластичность в критический период, таким образом, позволяла проводить «тонкую настройку» функций коры в результате приобретаемого совой опыта и знаний об окружающем мире. В результате этого сова начала ориентировать свои глаза по направлению к источнику звука несмотря на искажающие призмы.


Страница: