Ионообменная хроматография
Рефераты >> Биология >> Ионообменная хроматография

Контрионы, благодаря электростатистическому притяжению, находятся вблизи соответствующих ионов, но не связаны с ними химической связью. Поэтому под воздействием тепловых ударов молекул воды легкие контрионы часто отходят от ионогенных групп на значительные расстояния, а иногда и вовсе отрываются от них (кулоновские силы с расстоянием убывают очень быстро). Но очень скоро эти контрионы либо возвращаются, либо заменяются другими, точно такими же. Когда контрион находится вблизи иона ионогенной группы, он нейтрализует (экранирует) поле его заряда, когда удаляется — для электрического поля иона открывается возможность взаимодействовать с другими ионами, в том числе с ионами, открывшимися на поверхности оказавшейся вблизи молекулы белка.

Если бы обнажение заряда на матрице сопровождалось свечением, а сами мы, превратившись в «супергномов», оказались внутри гранулы ионообменника, то нашим глазам представилась бы волшебная картина мерцания бесчисленного множества разбросанных по всему объему огоньков. (Допустим, что красных, если заряды положительные.) Чем выше концентрация соли в элюенте, тем меньше времени каждый из зарядов ионообменника оставался бы открытым и, соответственно, меньшее число их было бы открыто одновременно — красные вспышки света стали бы короче и число огоньков уменьшилось. Если ионообменник слабый, то общее число ионогенных групп матрицы, участвующих в этом «фейерверке», можно было бы регулировать изменениями рН элюента, нейтрализуя химически часть ионогенных групп.

Теперь дополним нашу воображаемую картину медленно плывущими внутри гранулы крупными молекулами белка. На них тоже вспыхивают огоньки. Но уже двух цветов: красные и синие, так как кроме положительных анионитов на поверхности белка имеются и отрицательные ионогенные группы — катиони-ты. Разумеется для них тоже найдутся контрионы. При изменениях рН среды будет увеличиваться интенсивность свечения одних слабых ионогенных групп белка и одновременно уменьшаться интенсивность свечения других (другого цвета). Ионы соли, находящиеся в элюенте, влияют на электрическую активность незаблокированных за счет рН ионогенных групп белка в соответствии со своими зарядами.

Хроматографическое фракционирование белков

Мы подготовили материал для мысленного рассмотрения процессов закрепления молекулы белка на матрице ионообменника и его освобождения от связи с ней. Для первоначальной фиксации этой молекулы необходимо одновременное осуществление двух или, пожалуй, даже трех условий. Во-первых, белок должен подойти к нити полимера так, чтобы разноименно заряженные ионы на его поверхности и на нити сорбента оказались сближенными до расстояния, на котором эффективно действует кулоновская сила притяжения. Во-вторых (и в-третьих) оба сблизившихся иона должны быть не заблокированы контрионами. Хотя вероятность такого совпадения кажется и небольшой, но число столкновений с нитями ионообменника, которое испытывает каждая молекула белка за единицу времени настолько велико, что практически за несколько минут для каждой из молекул, находящихся внутри гранулы, благоприятная ситуация реализуется хотя бы однажды. Молекула в этот момент окажется связанной с матрицей. Ее поступательное движение прекратится, хотя под тепловыми ударами молекул воды молекула белка будет поворачиваться около единственной точки своей фиксации.

Оторвать макромолекулу белка от матрицы будет нелегко, потому что большая масса обусловит инерционность ее поведения, а также потому, что разнонаправленные импульсы ударов о поверхность белка многих молекул воды будут уравновешивать друг друга. Тем не менее, неизбежно наступит момент, когда равнодействующая этих импульсов окажется достаточно большой для того, чтобы удалить молекулу белка на такое расстояние, где кулоновское притяжение заметно ослабеет — молекула оторвется от матрицы. Если концентрация соответствующих контрионов в окрестностях обоих ионов будет мала и оба они в течение некоторого времени будут «открыты», то есть шанс, что отошедшая недалеко молекула белка за счет броуновского движения вновь сблизится с тем же самым ионом матрицы так, что восстановится ее первоначальная фиксация. Если же концентрация контрионов достаточно велика и хотя бы один из ранее взаимодействовавших ионов окажется заблокированным, белок окончательно оторвется от данной точки матрицы и возобновит свое диффузионное движение до тех пор, пока совпадение благоприятных условий не фиксирует его в новой точке внутри гранулы или пока он не покинет ее пределы и выйдет в окружающий элюент. Впрочем, в тот же момент из элюента в гранулу в процессе диффузии, вероятно, войдет точно такая же молекула белка.

Легко себе представить, что в первые же минуты после внесения смеси белков на колонку для каждого из них независимо установится динамическое равновесие распределения фиксированных и свободных молекул, отвечающее данным значением рН элюента и концентрации соли. А вместе с ним и динамическое равновесие концентраций этих молекул в подвижной и неподвижной фазах. (В отличие от гель-фильтрации, благодаря сорбции на обменнике равновесие концентраций будет сильно сдвинуто в сторону неподвижной фазы.)

После начала элюции свободно текущий элюент будет уносить молекулы, вышедшие из гранул, вниз по колонке. В результате чего динамическое равновесие концентраций в вышележащем слое будет восстанавливаться (на более низком общем уровне) за счет выхода молекул из неподвижной фазы в подвижную. А в нижележащем первоначально «пустом» слое гранул динамическое равновесие концентраций в двух фазах будет создаваться за счет перехода молекул из элюента в гранулы и их сорбции там. С новыми порциями свободного элюента, поступающего на колонку, этот процесс будет продолжаться, перенося все большее число молекул из вышележащего слоя в нижележащий . Таким образом зона связанного белка будет постепенно (и очень медленно) продвигаться вниз по колонке. Это продвижение будет происходить с различной скоростью у различных белков в соответствии с их индивидуальными особенностями. В первую очередь с количеством и пространственным расположением ионогенных групп на поверхности белка. Так будет продолжаться вплоть до выхода двигавшихся зон из колонки в виде более или менее узких «пиков» колоколообразной формы. Выходить эти пики будут, очевидно, в том же порядке и с такими же интервалами (или перекрытиями!), с какими двигались по колонке зоны связывания соответствующих белков. Это и есть истинный процесс хроматографического фракционирования.

До сих пор мы игнорировали возможность нахождения на поверхности белка двух и более ионогенных групп подходящего знака. Однако из приведенных ранее цифр следует, что расстояния между двумя такими группами на поверхности белковой глобулы и между ионогенными группами на ионообменнике имеют один и тот же порядок величины. Это означает возможность реализации следующей цепи событий.

Молекула белка в результате электростатической связи одного из своих зарядов с неподвижным ионом матрицы закрепляется в одной точке и начинает, как уже было сказано, поворачиваться относительно этой точки. Может оказаться, что при одном из таких поворотов второй заряд на ее поверхности окажется вблизи заряда противоположного знака на той же или другой, близко проходящей нити обменника. Возникает вторая электростатическая связь молекулы белка с матрицей. Такое событие качественно меняет ситуацию. Закрепление белка на обменнике оказывается не вдвое, а на порядок величины более прочным. Это обусловлено независимостью двух связей, что позволяет им как бы «страховать» друг друга. Представим себе, что под тепловыми ударами молекул воды одна из связей разорвалась. Удерживаемая второй связью молекула белка не сможет далеко отойти от места первоначального контакта. Она будет поворачиваться около этой второй связи, и весьма вероятно, что в ходе таких поворотов первая связь восстановится. В другой момент две эти связи могут поменяться ролями.


Страница: