Интеграция обмена углеводов, белков и жиров в организме. Транспортные системы в организме человека
Рефераты >> Биология >> Интеграция обмена углеводов, белков и жиров в организме. Транспортные системы в организме человека

Клетки, дифференцированные для осуществления специфических, биохимических и физиологических функций, взаимодействуют друг с другом, образуя ткани, которые, в свою очередь, структурно организованы в виде органов. Такая организация обеспечивает рациональное разделение функциональной активности, но требует участия контролирующих и согласующих работу различных органов и тканей, с тем, чтобы она гармонично соответствовала потребностям организма.

Эту интегрирующую роль играют 3 важнейшие системы:

Нервная система – является центром обработки информации и принятия решений, воспринимающей импульсы (недостаточность кислорода, голод, жажда, боль), а также передающий соответствующие команды другим органам.

Эндокринная система – фабрика и хранилище химических передатчиков (посредников) оказывающих разнообразные воздействия на рост, размножение и развитие, а также на другие важнейшие функции организма (поддержание в крови постоянства концентрации глюкозы, липидов, кальция, обеспечение оптимального соотношения синтеза и распада компонентов тканей).

Сосудистая система – которая служит для переноса всех химических соединений в организме.

В норме все эти 3 системы взаимодействуют бесперебойно.

Воздействие гормонов эндокринной системы осуществляется через ток крови и в зависимости от концентрации их регулирует секрецию этих гормонов по принципу отрицательной обратной связи. Взаимосвязь между превращениями углеводов, жиров и белков в процессе обмена веществ осуществляется следующим образом:

Углеводы, белки и липиды могут образовываться в результате процессов, имеющих сходное энергетическое обеспечение, из общих предшественников и промежуточных продуктов, общих конечных путей окисления углерода и водорода. При биосинтезе разнообразных органических соединений или макромолекул в качестве источников энергии используются либо АТФ, либо НАДН или НАДФН, поставляющие восстановительную энергию. Если в клетке осуществляется синтез определенного класса соединений, это должно происходить за счет катаболизма другого вещества. Например, когда от печени требуется увеличение синтеза глюкозы, она не может одновременно синтезировать белки и жиры, наоборот возникает необходимость осуществить гидролиз части имеющихся белков и жиров для обеспечения синтеза НАДН и АТФ для нужд глюконеогенеза. Общие предшественники и промежуточные продукты обмена являются предпосылкой возникновения еще одного уровня взаимосвязей метаболических путей. Общий фонд углеводов влияет на процессы синтеза липидов и белков. Наиболее важным общим промежуточным продуктом обмена веществ, представляющим решающее связующее звено, является ацетил КоА. Общим конечным путем для всех систем метаболизма являются цикл лимонной кислоты и реакции дыхательной цепи. Эти протекающие в митохондриях процессы используются для координации целого ряда метаболических реакций на различных уровнях. Цикл лимонной кислоты является в клетке главным источником двуокиси углерода для реакций карбоксилирования, с которых начинается синтез жирных кислот и глюконеогенез. Та же двуокись углерода поставляет углерод для мочевины и некоторых звеньев пуриновых и пиримидиновых колец.

Взаимосвязь между процессами углеводного и азотистого обмена также достигаются посредством промежуточных продуктов цикла лимонной кислоты. Существует несколько путей, по которым промежуточные продукты цикла лимонной кислоты включаются в процесс липогенеза. Расщепление цитрата приводит к образованию ацетил КоА, играющего роль предшественника в биосинтезе жирных кислот.

Изоцитрат и малат обеспечивают образование НАДФ, который расходуется в последующих восстановительных этапах синтеза жиров.

Роль ключевого фактора, определяющего превращение НАДН играет состояние адениннуклеотидов. Высокое содержание АДФ и низкое АТФ свидетельствует о малом запасе энергии. При этом НАДН вовлекается в реакции дыхательной цепи, усиливая сопряженные с запасанием энергии процессы окислительного фосфорилирования. Обратное явление наблюдается при низком содержании АДФ и высоком АТФ. Ограничивая работу системы переноса электронов, они способствуют использованию НАДН в других восстановительных реакциях, таких как синтез глутамата и глюконеогенез. В некоторых случаях биохимические процессы в клетках узкоспециализированы и функции клеток весьма ограничены, в других случаях клетки обладают способностью осуществлять самые разнообразные ферментативные превращения.

По многообразию и приспособляемости ни один другой орган не может сравниться с печенью, в которой происходят сложные взаимосвязанные процессы обмена веществ, воздействующие на весь организм. Печень как железа наделена и экзокринными и эндокринными функциями. Продуктом внешней секреции является желчь, выделяемая в желудочнокишечный тракт. Продуктами внутренней секреции печени являются не гормоны, а метаболиты, которые разносятся током крови и используются другими клетками, изменяя их функции. Это: глюкоза, которая используется для гликолиза, триацилглицериды – для липогенеза. Кетоновые тела – используются в мышечной и нервной тканях как источники энергии. Печень ответственна за синтез альбумина, сывороточных липопротеидов и факторов свертывания крови. Процессы обмена жиров в печени и жировой клетчатке неразрывно связаны между собой. Существует взаимосвязь между процессами обмена веществ в мышечной и печеночной тканях на нескольких уровнях. Процесс глюконеогенеза осуществляется как в печени, так и в почках и они взаимосвязаны. Наконец, тесно связаны между собой и процессы обмена в тканях мозга и печени, прежде всего из-за того, что нервная ткань целиком зависит от бесперебойной доставки глюкозы, которая обеспечивается печенью.

Таким образом здоровый организм находится в равновесии с окружающей средой.

Транспортные системы в организме человека.

Метаболические процессы, протекающие во всех клетках тела, требуют непрерывного притока питательных веществ и кислорода и непрерывного удаления продуктов обмена. У некоторых видов животных транспортная система, кроме того, служит для переноса гормонов из эндокринных желез в те органы, на которые они воздействуют, а также участвует в регуляции температуры тела.

У человека система кровообращения слагается из кровеносных сосудов, наполняющей их крови и сердца, приводящего кровь в движение. Кровь состоит из жидкой плазмы и взвешенных в ней кровяных клеток. В большинстве случаев переносимый кровью кислород не просто растворен в плазме, а соединен с тем или иным гемопротеидом, это гемоглобин, находящийся в эритроцитах. Система кровеносных сосудов у человека состоит из артерий, вен и капилляров.

Артерии и вены – это крупные сосуды, которые отличаются друг от друга направлением тока крови и строением стенок. Артерии несут кровь от сердца к тканям, а вены возвращают ее от тканей к сердцу. Капилляры –микроскопические сосуды, которые находятся в тканях и соединяют артерии с венами. Тонкие стенки капилляров состоят из одного слоя клеток эндотелия, через который различные вещества могут переходить из крови в ткани и обратно. Кровь не вступает в прямое соприкосновение с клетками организма, они омываются тканевой жидкостью. Для того чтобы достигнуть клеток, вещества должны перейти из крови через стенку капилляра и через пространство, заполненное тканевой жидкостью. Стенка капилляра имеет крупные поры, чем плазматическая мембрана клеток, через них легко диффундирует глюкоза, аминокислоты и мочевина, а также ионы натрия, хлора и др.


Страница: