Интеграция обмена углеводов, белков и жиров в организме. Транспортные системы в организме человека
Таким образом, преобладание распада ряда одних питательных веществ и биосинтеза других прежде всего определяется физиологическим состоянием и потребностями организма в энергии и метаболитах. Этими факторами в значительной степени может быть объяснено существование постоянного динамического состояния химических составных компонентов организма как единого целого. В организме человека как и в живой природе вообще не существует самостоятельного обмена белков, жиров , углеводов и нуклеиновых кислот. Все они объединены в единый процесс метаболизма, допускающий взаимопревращения между отдельными классами органических веществ.
Живой организм и условия его существования находятся в постоянной зависимости от условий окружающей среды. Обмен веществ в организме человека протекает не хаотично, а “тонко” настроен. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. Синтез и распад взаимосвязаны, координированы и регулируются нейрогуморальными механизмами, придающими химическим процессам нужное направление. Интенсивность, направление любой реакции определяется ферментами, которые оказывают прямое влияние на обмен липидов, углеводов, нуклеиновых кислот. Синтез любого фермента-белка – требует участия ДНК и почти всех 3-х типов рибонуклеиновых кислот (транспортной, матричной и рибосомной РНК) Если к этому добавить влияние гормонов и различных продуктов распада (биогенных аминов), то видна согласованность и коодинированность огромного разнообразия химических процессов, совершающихся в организме, что определяется физиологическим состоянием и потребностями организма.
Проблема регуляции обмена веществ занимает особое место среди других проблем патологии, так как всякая патология и есть нарушение регуляторных процессов. Характерной особенностью регуляторных механизмов в живой природе является автоматизм. Саморегуляция биохимических процессов обмена веществ – одно из неотъемлемых свойств живой материи. Болезнь – это такое состояние при котором те или иные системы саморегуляции обычно выведены за пределы их физиологической адаптации. Механизмы саморегуляции обмена веществ живого организма развертываются на различных уровнях: молекулярном, клеточном, органном и целостного организма.
Известно, что в основе всех процессов обмена лежат те или иные химические реакции. Поэтому истоки регуляторных механизмов следует искать, начиная с факторов, регулирующих скорости отдельных химических реакций. На молекулярном уровне различают следующие элементы регуляции: концентрация исходных и конечных продуктов. Химические процессы, протекающие в живых организмах, обычно могут поддерживаться в стационарном состоянии только при наличии внешних источников энергии.
В химических реакциях обмена веществ обязательно принимают участие биологические катализаторы – ферменты, которым принадлежит решающая роль в определении скорости реакции. Скорость протекания ферментативных реакций зависит от:
1) Агентов, регулирующих рН, температуру, ионную силу, окислительно-восстановительный потенциал.
2) Соединений, специфически взаимодействующих с активным центром фермента (субстраты, коферменты).
3) Соединений, взаимодействующих специфически с ферментом вне его активного центра.
В результате взаимодействия этих веществ с ферментами происходит изменение пространственной конфигурации ферментного белка (конформационные изменения) на уровне третичной или четвертичной структуры.
1. рН, t и т.д. поддерживаются постоянными в узких, оптимальных для жизнедеятельности клетки пределах. 2. Повышение концентрации субстратов и коферментов обычно ускоряет ферментативные реакции
Аллостерическое взаимодействие – это взаимодействие метаболита или другого регуляторного фактора с участком ферментативного белка, в результате изменяется конформация белковой молекулы фермента и фермент теряет свои каталитические свойства.
По сравнению с молекулярным, клетка значительно более высокий качественно иной уровень организации биохимических процессов. Здесь имеется компактная саморегулирующаяся система. Наиболее характерная ее особенность – это структурная упорядоченность. Детальное разделение функций между отдельными органоидами. Роль важнейшего компонента выполняет биологическая мембрана. Главное содержание регуляции на клеточном уровне – координация различных метаболических процессов:
Сопряженность процессов субстратного дегидрирования и транспорта водородов и электронов в цепи дыхательных катализаторов, сопряжение окисления и фосфорилирования, образование макроэргических соединений и их трата, способность переключать метаболизм с аэробного режима на анаэробный, координация процессов биосинтеза белков и нуклеиновых кислот. В связи с этим особенно важны ферментативные реакции и метаболизм узловых этапов обмена.
На уровне целостного организма многие клетки приобретают специализированные функции, связанные с взаимодействием организма с внешней средой и поддержание постоянства внутренней среды. Регуляция обмена веществ при участии нервной и гуморальной систем на уровне целостного организма обладает совершенством и дает возможность сложному многоклеточному организму на этом уровне организации приобрести максимальную степень автономности по отношению к изменяющимся факторам внешней среды. Конечная цель регуляции на уровне целостного организма – поддержание оптимального значения основных параметров и “внутренней среды”, в которой живут клетки организма. Объектом регуляции являются те же самые метаболические процессы, как и на клеточном уровне регуляции. Разница заключается в том, что на уровне целостного организма избирательность действия регуляторного агента проявляется в отношении всего органа или ткани, в которых процесс подвергается изменению. Система регуляции приспособлена к выбору такого варианта регуляции, который позволяет максимально использовать специфическую роль того или иного органа в адаптации обмена целостного организма в новых условиях.
Регуляция обмена веществ на уровне целостного организма не только повышает адаптационные возможности клеток организма, но и влияет на собственный метаболизм каждой клетки. Если на первых этапах метаболический аппарат клетки работает в соответствии с генетической программой, то по мере усложнения связей клетки со всем организмом все большее значение приобретают факторы нейрогуморального характера. Для сохранения жизнедеятельности организма особое значение имеет поддержание стабильного химического состава крови как ткани, объединяющей всю внутреннюю среду организма в единое целое.
Это обеспечивается согласованной работой органов непосредственно регулирующих синтез и поступление в кровь ряда веществ, а с другой – выведение ее конечных продуктов обмена. Подобный механизм регуляции клеточного обмена по типу обратной связи с включением ЦНС, эфферентных нервов, гуморальных звеньев и органов-регуляторов внутренней среды, по-видимому, лежит в основе регуляторных отношений в целостном организме.
Таким образом, организм человека бесконечно более сложен чем простой конгломерат или совокупность различного типа клеток.