Закон сохранения массы до Эйнштейна и после
Рефераты >> Биология >> Закон сохранения массы до Эйнштейна и после

В огне химических реакций происходит то же эйнштейновское преобразование массы в энергию, что и, например, в звездах. Любой взрыв, военный или технический, самая обычная тепловая электростанция, работающая на газе, нефти или угле, двигатели внутреннего сгорания в автомобилях - все это и многое другое существует и действует только потому, что в природе имеется возможность преобразования массы в энергию. Не будь этого, современная цивилизация была бы невозможна.

Но и это еще не все. Сама жизнь на земле немыслима без преобразования массы в энергию. Этот процесс происходит в нас самих, просто когда мы дышим. При дыхании в организм поступает кислород воздуха, который идет на непрерывное окисление органических веществ (углерода в его соединениях).

В результате этого "внутреннего горения" выделяется энергия. Все теплокровные животные вырабатывают себе тепло в такого рода химических реакциях и черпают из них энергию для повседневной активности. Эффективность этих процессов приблизительно та же, что и в упомянутом выше примере газовой горелки.

Природа массы

Вернемся в заключение к фундаментальной физике. Свойство массы превращаться в энергию (и наоборот) не было известно в ньютоновской классической физике. Этот грандиозный резервуар энергии открыла в природе теория относительности. Выше мы постарались выяснить, что, почему и при каких условиях происходит с массой и энергией при их взаимных преобразованиях. Но хотелось бы по возможности наглядно понять, как именно все это происходит на самом глубинном уровне. Действительно, каким образом от протона или нейтрона отнимается какая-то часть их природной массы, когда нуклоны объединяются в сложное атомное ядро? Что за процессы разыгрываются внутри протона и между нуклонами под действием ядерных сил? Или при гораздо меньших энергиях, когда у атомов отбирается часть массы, пусть и совсем небольшая, при их соединении в молекулу? И вообще, откуда берется масса у элементарных частиц, составляющих все тела природы? Почему эти массы столь различны, и, например, свободный электрон примерно в две тысячи раз легче свободного протона?

На эти вопросы нет ответа. Проблема физической природы массы еще далеко не исчерпана; со времен Ньютона она была и остается едва ли не самой острой в фундаментальной физике. Согласно одной из активно обсуждаемых в последние годы идей, элементарные частицы приобретают массы благодаря взаимодействию с некоторой особой элементарной частицей, имеющей нулевой спин. У этой гипотетической частицы уже имеется название - хиггс, или хиггсовский бозоне, по имени автора этой идеи; но ее существование пока не удается доказать в прямом лабораторном эксперименте. Возможно, ситуация прояснится в ближайшие несколько лет, когда начнутся эксперименты на ускорителе нового поколения - Большом андронном коллайдере в Европейском центре ядерных исследований. С этим могучим инструментом связывают сейчас основные надежды на новый решительный шаг в разгадке самых важных тайн природы.

Заключение

На протяжении всей истории человечества постепенно менялись представления о массе и её свойствах. Создание Эйнштейном теории относительности подвело временный итог в работе естествоиспытателей по раскрытию основополагающих законов природы, одним из которых как раз и является закон сохранения массы. Итог временный, поскольку до сих пор не изучено до конца это удивительное явление – масса. Пожалуй, чем глубже мы подбираемся к раскрытию основы материи, тем больше новых трудностей и вопросов ставит перед нами природа. Но человек всегда обладал пытливым умом, громадным терпением и немалой хитростью, что и помогало ему в изучении естественных движущих сил и постановке этих сил себе на службу. Эти свойства будут помогать ему и в дальнейшем познании основных природных законов.

Говоря о конкретном значении закона сохранения массы, то мы не ошибёмся, если поставим его на одно из первых мест в списке используемых человеком природных явлений. Практически всё химическое производство (а именно расчёт необходимого сырья и энергозатрат, обоснование того или иного метода производства конечного продукта) основано на законе сохранения массы. Дефект масс (частное проявление более общего закона сохранения массы-энергии) лежит в основе ядерной энергетики, давшей человеку дешёвую энергию, новые методы исследований, лечения различных заболеваний, новые методы производства и многое другое. Можно сказать больше – именно благодаря дефекту масс светит Солнце и другие звёзды, что обеспечивает жизнь на Земле, а так же использование человеком альтернативной солнечной и ветряной энергии. Такое простое явление как горение также основано на законе сохранения массы, а ведь именно огонь помог человеку освоить родную планету и перейти от охоты и собирательства к современному промышленному производству. Рассматриваемый закон открывает перед нами новые способы получения энергии и материалов, что в будущем открывает путь к звёздам и освоению Солнечной системы и галактики.

Таким образом можно сделать вывод о том, что уже в настоящее время закон сохранения массы находит широкое применение в науке и технике. Хотя на первый взгляд он может показаться лишь одним из фундаментальных принципов устройства мира, мало связанным с повседневной жизнью, на самом деле на каждом шагу человек сталкивается с проявлениями данного закона. Пожалуй, цивилизация не достигла бы таких высот в своём развитии, не овладей человек в полной мере законом сохранения массы.

Литература

1. Гельфер Я.М. Законы сохранения. - М.: Наука, 1967. - 264 с.

2. Готт В.С. Удивительный неисчерпаемый познаваемый мир. - М.: Знание, 1974. - 224 с.

3. Друянов Л.А. Законы природы и их познание. - М.: Просвещение, 1982.- 112 с., ил.

4. Физический энциклопедический словарь / Гл.ред. А.М. Прохоров, - М.: Сов. Энциклопедия, 1983. -928 с., ил., 2 л. цв. ил.

5. Философский словарь / Под ред. И.Т. Фролова. - 4-е изд. - М.: Политиздат, 1981. - 445 с.


Страница: