Закон сохранения массы до Эйнштейна и после
Самое важное состоит в том, что эйнштейновская формула раскрывает возможность взаимных превращений энергии и массы. Или, что в точности то же, возможность превращений энергии покоя в другие виды энергии. Поэтому теперь масса и энергия сохраняются не по-отдельности, а вместе: взамен двух по видимости разных законов сохранения ньютоновской физики в релятивистской физике действует один - объединенный закон сохранения массы и энергии. Первый пример превращений массы и энергии Эйнштейн дал в том же 1905 году. Он рассуждал об излучении телом электромагнитных волн, причем считалось, что волны уходили от тела симметрично в противоположных направлениях, так что тело могло оставаться в покое. Пусть волны унесли некоторую энергию L (таково было принятое у него обозначение). Тогда масса тела должна уменьшиться на величину этой энергии, деленной на квадрат скорости света. В таком виде первоначально и появилась знаменитая формула.
Ядерная энергетика
Взаимное преобразование массы и энергии, описываемое формулой Эйнштейна, лежит в основе огромного разнообразия процессов в природе и технике. Если отталкиваться от примера, данного Эйнштейном, то можно говорить также и об увеличении массы тела, если оно не излучает, а, наоборот, поглощает пришедшие симметрично извне волны. Масса тела растет и в случае, когда его тем или иным способом нагревают: к массе присоединяется массовый эквивалент добавленной тепловой энергии, то есть эта энергия, деленная на квадрат скорости света. Так что, например, горячий утюг тяжелее холодного. Но самый впечатляющий пример - преобразование массы в энергию при ядерных реакциях. Об этом впервые заговорили через два десятилетия после создания теории относительности, а сейчас это стало самым многообещающим направлением в энергетике настоящего и будущего.
Всем известно, что звезды светят за счет ядерных реакций; в недрах Солнца идет ядерная реакция синтеза гелия из водорода. Энергия выделяется и в ядерных реакциях распада, - например, распада урана при поглощении медленных нейтронов. Реакции обоих типов, синтеза и распада, используются в ядерном оружии. На реакциях деления работают атомные электростанции. Реакции ядерного синтеза могут стать самым эффективным (и, как полагают, безопасным) способом получения энергии, когда их удастся осуществлять в управляемом режиме. Горючее для термоядерных реакторов - воду - можно будет черпать в неограниченном количестве из мирового океана. Строительство и изучение действующих экспериментальных прототипов таких установок идет сейчас полным ходом. Ожидается, что самый крупный международный термоядерный реактор ТОКАМАК-ИТЭР будет запущен в 2010-2011 гг., а еще через 20 лет на его основе может быть построена первая термоядерная электростанция. Во всех случаях выделения энергии масса продуктов ядерной реакции меньше исходной массы вступающих в реакцию частиц. Разница превращается в кинетическую энергию продуктов реакции. Но как возникает эта разница масс?
Дело в том, что масса каждого ядра определяется не только индивидуальными массами составляющих его частиц нуклонов, то есть протонов и нейтронов. Важно и взаимодействие нуклонов между собой внутри ядра. Протоны и нейтроны в ядре связаны друг с другом силами притяжения, и это ядерное притяжение гораздо сильнее ньютоновского взаимного тяготения. Силы, действующие внутри ядра, так и называются ядерными силами. Чтобы растащить частицы ядра друг от друга, освободить их от ядерного притяжения, требуется, очевидно, затратить определенную энергию. Но легко себе представить, что соединение тех же нуклонов в ядро должно сопровождаться отводом энергии из ядра. При слиянии частиц в ядро освобождается столько же энергии, сколько требуется для их освобождения из готового ядра. Образующееся ядро теряет энергию, а согласно формуле Эйнштейна, это означает и потерю массы. В результате из-за ядерных сил масса ядра оказывается меньше суммы масс того же числа свободных протонов и нейтронов. Так как полная энергия-масса сохраняется, энергетический эквивалент этого различия переходит в кинетическую энергию продуктов реакции. Приведем характерный пример. Ядро гелия состоит из двух протонов и двух нейтронов (имеется в виду самый распространенный изотоп гелий-4.) Масса этого ядра составляет 4,0038 в атомных единицах массы (1 а.е.м. - 1/12 часть массы атома углерода-12, или 1.66*10-24 грамм). В тех же единицах масса свободного протона есть 1,00807, а масса свободного нейтрона 1,00888. Суммарная масса двух свободных протонов и двух свободных нейтронов - 4,0339 а.е.м. Отсюда видно, что масса ядра гелия меньше суммы масс четырех нуклонов на величину 0,0301 а.е.м. Этот недостаток массы называют дефектом массы. Из этих цифр видно, что дефект массы составляет чуть меньше одного процента исходной массы нуклонов. Но энергетический эквивалент этой величины огромен, - это может легко вообразить себе каждый, кто хоть раз видел кинокадры взрыва водородной бомбы.
Предельный случай преобразования массы и энергии - полный переход всей массы в энергию. Это возможно, если частица сталкивается с античастицей, - например, электрон с позитроном. Частица и античастица при этом исчезают (аннигилируют), порождая фотоны. Так как фотон - безмассовая частица, суммарная масса частицы и античастицы целиком переходит в кинетическую энергию фотонов. Это реальный физический процесс, давно уже изученный не только теоретически, но и экспериментально, что особенно важно. В таких экспериментах формула Эйнштейна проверена и подтверждена со всей возможной точностью.
Энергия огня
Открытие ядерных источников энергии нередко сравнивают с покорением огня древним человеком. Согласно археологическим данным, добывать огонь научились в эпоху позднего палеолита, и это достижение, как считается, окончательно отделило человека от животного царства. Звездное небо и огонь - это то, что издавна волновало человека, занимало его воображение и ум. Свет звезд и свет огня имеют одну природу - это результат преобразования массы в энергию. О звездах мы уже говорили; скажем теперь об огне. Физическую суть огня раскрыла в действительности лишь теория относительности. Огонь - результат химической реакции горения. Как и в ядерной реакции, при горении сумма масс продуктов реакции меньше исходной массы горючего и окислителя (последним чаще всего служит кислород воздуха). Разность начальной и конечной масс превращается в кинетическую (тепловую) энергию продуктов реакции. Продукты реакции и раскаленные ими до высоких температур макроскопические частицы углерода создают пламя, излучая видимый глазом свет. В энергию огня переходит лишь очень малая часть массы горючего и кислорода. Дело в том, что в химических реакциях участвуют не ядра, а атомы и молекулы. Дефект массы в молекулах гораздо меньше, чем в ядрах. При объединении атомов в молекулу или при превращениях одних молекул в другие изменение массы оказывается в десятки и сотни миллионов раз меньше, чем в ядерных реакциях. Например, при горении метана в газовой горелке преобразуется в тепло лишь одна десятимиллиардная доля массы покоя газа. Когда в топке сжигается тонна угля, в энергию переходит около одной трехтысячной доли грамма угля и использованного для горения кислорода.