Страница
5
Активный транспорт отличается от пассивного тем, что идет против градиентов концентрации вещества, используя энергию АТФ, образующуюся за счет клеточного метаболизма. Благодаря активному транспорту могут преодолеваться силы не только концентрационного, но и электрического градиента. Например, при активном транспорте Na+ из клетки наружу преодолевается не только концентрационный градиент (снаружи содержание Na+ в 10-15 раз больше), но и сопротивление электрического заряда (снаружи клеточная мембрана у абсолютного большинства клеток заряжена положительно, и это создает противодействие выходу положительно заряженного Na+ из клетки).
Активный транспорт Na+ обеспечивается белком Na+, независимой АТФазой. В биохимии окончание "аза" добавляется к названию белка в том случае, если он обладает ферментативными свойствами. Таким образом, название Na+, ^-зависимая АТФаза означает, что это вещество - белок, который расщепляет аденозинтрифосфорную кислоту только при обязательном наличии взаимодействия с ионами Na+ и К+. Энергия, освобождаемая в результате расщепления АТФ, идет на вынос из клетки трех ионов натрия и транспорт внутрь клетки Двух ионов калия. [12]
Имеются также белки, осуществляющие активный транспорт ионов водорода, кальция и хлора. В волокнах скелетных мышц Са - зависимая АТФаза встроена в мембраны саркоплазматического ретикулума, который образует внутриклеточные емкости (цистерны, продольные трубочки), накапливающие Са. Кальциевый насос за счет энергии расщепления АТФ переносит ионы Са из саркоплазмы в цистерны ретикулума и может создавать в них концентрацию Са, приближающуюся к 10~3 М, т.е. в 10 000 раз большую, чем в саркоплазме волокна.
Вторично-активный транспорт характеризуется тем, что перенос вещества через мембрану идет за счет градиента концентрации другого вещества, для которого имеется механизм активного транспорта. Чаще всего вторично-активный транспорт происходит за счет использования градиента натрия, т.е. Na+ идет через мембрану в сторону его меньшей концентрации и тянет за собой другое вещество. При этом обычно используется встроенный в мембрану специфический белок-переносчик.
Например, транспорт аминокислот и глюкозы из первичной мочи в кровь, осуществляемый в начальном участке почечных канальцев, происходит благодаря тому, что белок-переносчик мембраны канальцевого эпителия связывается с аминокислотой и ионом натрия и только тогда изменяет свое положение в мембране таким образом, что переносит аминокислоту и натрий в цитоплазму. Для наличия такого транспорта необходимо, чтобы снаружи клетки концентрация натрия была гораздо больше, чем внутри.
Для понимания механизмов гуморальных регуляций в организме необходимо знание не только структуры и проницаемости клеточных мембран для различных веществ, но и структуры и проницаемости более сложных образований, находящихся между кровью и тканями различных органов.
4. Гистогематические барьеры (ГГБ): назначение и функции
Гистогематические барьеры - это совокупность морфологических, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих взаимодействия крови и органов. Гистогематические барьеры участвуют в создании гомеостаза организма и отдельных органов. Благодаря наличию ГГБ каждый орган живет в своей особой среде, которая может значительно отличаться от плазмы крови по составу отдельных ингредиентов. Особенно мощные барьеры существуют между кровью и мозгом, кровью и тканью половых желез, кровью и камерной влагой глаза. [13] Непосредственный контакт с кровью имеет слой барьера, образованный эндотелием кровеносных капилляров, далее идет базальная мембрана с перицитами (средний слой) и затем - адвентициальные клетки органов и тканей (наружный слой). Гистогематические барьеры, изменяя свою проницаемость для различных веществ, могут ограничивать или же облегчать их доставку к органу. Для ряда токсичных веществ они непроницаемы. В этом проявляется их защитная функция. [14]
Гематоэнцефалический барьер (ГЭБ) - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих взаимодействие крови и ткани мозга. Морфологической основой ГЭБ является эндотелий и базальная мембрана мозговых капилляров, интерстициальные элементы и гликокаликс, нейроглия, своеобразные клетки которой (астроциты) охватывают своими ножками всю поверхность капилляра. В барьерные механизмы входят также транспортные системы эндотелия капиллярных стенок, включающие пино- и экзоцитоз, эндоплазматическую сеть, образование каналов, ферментные системы, модифицирующие или разрушающие поступающие вещества, а также белки, выполняющие функцию переносчиков.
В структуре мембран эндотелия капилляров мозга, так же как и в ряде других органов, обнаружены белки аквапорины, создающие каналы, избирательно пропускающие молекулы воды.
Капилляры мозга отличаются от капилляров других органов тем, что эндотелиальные клетки образуют непрерывную стенку. В местах контакта наружные слои эндотелиальных клеток сливаются, образуя так называемые плотные контакты.
Среди функций ГЭБ выделяют защитную и регулирующую. Он защищает мозг от действия чужеродных и токсичных веществ, участвует в транспорте веществ между кровью и мозгом и создает тем самым гомеостаз межклеточной жидкости мозга и ликвора.
Гематоэнцефалический барьер обладает избирательной проницаемостью для различных веществ. Некоторые биологически активные вещества (например, катехоламины) практически не проходят через этот барьер. Исключение составляют лишь небольшие участки барьера на границе с гипофизом, эпифизом и некоторыми участками гипоталамуса, где проницаемость ГЭБ для всех веществ высокая.
В этих областях обнаружены пронизывающие эндотелий щели или каналы, по которым проникают вещества из крови во внеклеточную жидкость мозговой ткани или в сами нейроны. [15]
Высокая проницаемость ГЭБ в этих областях позволяет биологически активным веществам достигать тех нейронов гипоталамуса и железистых клеток, на которых замыкается регуляторный контур нейроэндокринных систем организма.
Характерной чертой функционирования ГЭБ является регуляция проницаемости для веществ адекватно сложившимся условиям. Регуляция идет за счет:
1) изменения площади открытых капилляров,
2) изменения скорости кровотока,
3) изменения состояния клеточных мембран и межклеточного вещества, активности клеточных ферментных систем, пино- и экзоцитоза.
Считается, что ГЭБ, создавая значительное препятствие для проникновения веществ из крови в мозг, вместе с тем хорошо пропускает эти вещества в обратном направлении из мозга в кровь.
Проницаемость ГЭБ для различных веществ сильно различается. Жирорастворимые вещества, как правило, проникают через ГЭБ легче, чем водорастворимые. Относительно легко проникают кислород, углекислый газ, никотин, этиловый спирт, героин, жирорастворимые антибиотики (хлорамфеникол и др.).
Нерастворимые в липидах глюкоза и некоторые незаменимые аминокислоты не могут проходить в мозг путем простой диффузии. Они узнаются и транспортируются специальными переносчиками. Транспортная система настолько специфична, что различает стереоизомеры D - и L-глюкозы. D-глюкоза транспортируется, а L-глюкоза - нет. Этот транспорт обеспечивается встроенными в мембрану белками-переносчиками. Транспорт нечувствителен к инсулину, но подавляется цитохолазином В.