Гуморальная регуляция организма
Паракринная регуляция часто используется одновременно с аутокринной. Например, при передаче возбуждения в синапсах сигнальные молекулы, выделяемые нервным окончанием, связываются не только с рецепторами соседней клетки (на постсинаптической мембране), но и с рецепторами на мембране этого же нервного окончания (т.е. пресинаптической мембране).
Юкстакринный механизм. Осуществляется путем передачи сигнальных молекул непосредственно от наружной поверхности мембраны одной клетки на мембрану другой. Это происходит при условии непосредственного контакта (прикрепления, адгезионного сцепления) мембран двух клеток. Такое прикрепление происходит, например, при взаимодействии лейкоцитов и тромбоцитов с эндотелием кровеносных капилляров в месте, где имеется воспалительный процесс. На мембранах, выстилающих капилляры клеток, в месте воспаления появляются сигнальные молекулы, которые связываются с рецепторами определенных видов лейкоцитов. Такая связь приводит к активации прикрепления лейкоцитов к поверхности кровеносного сосуда. За этим может последовать целый комплекс биологических реакций, обеспечивающих переход лейкоцитов из капилляра в ткань и подавление ими воспалительной реакции.
Взаимодействия через межклеточные контакты. Осуществляются через межмембранные соединения (вставочные диски, нексусы). В частности, весьма распространена передача сигнальных молекул и некоторых метаболитов через щелевые контакты - нексусы. При образовании нексусов особые белковые молекулы (коннексоны) клеточной мембраны объединяются по 6 штук так, что формируют кольцо с порой внутри. На мембране соседней клетки (точно напротив) формируется такое же кольцевидное образование с порой. Две центральные поры, объединяясь, формируют канал, пронизывающий мембраны соседних клеток. ширина канала достаточна для прохождения многих биологически активных веществ и метаболитов. Через нексусы свободно проходят ионы Са, являющиеся мощными регуляторами внутриклеточных процессов.
Благодаря высокой электропроводности нексусы способствуют распространению локальных токов между соседними клетками и формированию функционального единства ткани. Особенно выражены такие взаимодействия клеток сердечной мышцы и гладких мышц. Нарушение состояния межклеточных контактов приводит к патологии сердца, изменению тонуса мышц сосудов, слабости сокращения матки и изменению ряда других регуляций.
Межклеточные контакты, выполняющие роль упрочения физической связи между мембранами, - плотные соединения и адгезионные пояса. Такие контакты могут иметь вид кругового пояса, проходящего между боковыми поверхностями клетки. Уплотнение и увеличение прочности этих соединений обеспечивается прикреплением на поверхности мембран белков миозина, актинина, тропомиозина, винкулина и др. Плотные соединения способствуют объединению клеток в ткань, их слипанию и устойчивости ткани к механическим воздействиям. Они участвуют также в формировании барьерных образований организма. Плотные контакты особенно выражены между эндотелием, выстилающим сосуды головного мозга. Они уменьшают проницаемость этих сосудов для циркулирующих в крови веществ. [10]
Во всех гуморальных регуляциях, осуществляемых с участием специфических сигнальных молекул, важную роль играют клеточные и внутриклеточные мембраны. Поэтому для понимания механизма гуморальных регуляций необходимо знать элементы физиологии клеточных мембран.
3. Особенности строения, свойства и функции клеточных мембран
3.1 Особенности строения и свойства клеточных мембран
Для всех клеточных мембран характерен один принцип строения (рис.1). Их основу составляют два слоя липидов (молекул жиров, среди которых больше всего фосфолипидов, но имеется также холестерол и гликолипиды).
Рис.1. Схема строения клеточной мембраны
Молекулы мембранных липидов имеют головку (участок, притягивающий воду и стремящийся взаимодействовать с ней, называемый гидрофильным) и хвост, который является гидрофобным (отталкивается от молекул воды, избегает их соседства). В результате такого различия свойств головки и хвоста липидных молекул последние при попадании на поверхность воды выстраиваются рядами: головка к головке, хвост к хвосту и образуют двойной слой, в котором гидрофильные головки обращены к воде, а гидрофобные хвосты - друг к другу. Хвосты находятся внутри этого двойного слоя. Наличие липидного слоя образует замкнутое пространство, изолирует цитоплазму от окружающей водной среды и создает препятствие для прохождения воды и растворимых в ней веществ через клеточную мембрану. Толщина такого липидного бислоя составляет около 5 нм.
В состав мембран также входят белки. Их молекулы по объему и по массе в 40-50 раз больше, чем молекулы мембранных липидов. За счет белков толщина мембраны достигает 7 - 10 нм. Несмотря на то, что суммарные массы белков и липидов в большинстве мембран почти равны, количество молекул белков в мембране в десятки раз меньше, чем молекул липидов. Обычно белковые молекулы расположены разрозненно. Они как бы растворены в мембране, могут в ней смещаться и изменять свое положение. Это послужило поводом к тому, что строение мембраны назвали жидкостно-мозаичным. Молекулы липидов тоже могут смещаться вдоль мембраны и даже перепрыгивать из одного липидного слоя в другой. Следовательно, мембрана имеет признаки текучести и вместе с тем обладает свойством самосборки, может восстанавливаться после повреждений за счет свойства липидных молекул выстраиваться в двойной липидный слой.
Белковые молекулы могут пронизывать всю мембрану так, что их концевые участки выступают за ее поперечные пределы. Такие белки называют трансмембранными или интегральными. Есть также белки, только частично погруженные в мембрану или располагающиеся на ее поверхности.
Белки клеточных мембран выполняют многочисленные Функции. Для осуществления каждой функции геном клетки обеспечивает запуск синтеза специфического белка. Даже в относительно просто устроенной мембране эритроцита имеется около 100 разных белков.
Среди важнейших функций мембранных белков отмечаются:
1) рецепторная - взаимодействие с сигнальными молекулами и передача сигнала в клетку;
2) транспортная - перенос веществ через мембраны и обеспечение обмена между цитозолем и окружающей средой. Существует несколько разновидностей белковых молекул (транслоказ), обеспечивающих трансмембранный транспорт. Среди них есть белки, формирующие каналы, которые пронизывают мембрану и через них идет диффузия определенных веществ между цитозолем и внеклеточным пространством. Такие каналы чаще всего ионоселективные, т.е. пропускают ионы только одного вещества. Есть также каналы, избирательность которых меньшая, например они пропускают ионы Na+ и К, К и С1~. Есть также белки-переносчики, которые обеспечивают транспорт вещества через мембрану за счет изменения своего положения в этой мембране;