Генетическая регуляция развития
Мутации с материнским эффектом
У таких разных организмов, как морские ежи и лягушки, события, происходящие на ранних стадиях дробления, и, в сущности, большая часть, если не все развитие, предшествующее гаструляции, не зависят от генома зиготы. Информацию, необходимую для выполнения этих начальных и решающих этапов онтогенеза, определяет материнский геном при образовании яйцеклетки. На примере закручивания раковины у Limnaea, такое заключение подтверждается существованием у широкого круга различных организмов так называемых генов с материнским эффектом. Мутации этих генов передаются по наследству чрезвычайно своеобразным способом. При скрещивании двух особей, гетерозиготных по какому-либо рецессивному признаку, следует ожидать, что этот признак проявится у 25% потомков. Однако в случае материнских (mat) мутаций особи mat/mat развиваются нормально. Более того, мужские особи с таким генотипом фертильны и при скрещивании с нормальными женскими особями дают нормальных потомков. В отличие от этого гомозиготные самки дают аномальных потомков. Это объясняется тем, что у таких самок образуются аномальные яйцеклетки, которые не могут завершить нормальное развитие. Самка mat/mat выживает, потому что она происходит от гетерозиготной (mat/+) матери, способной продуцировать нормальные яйца. Хотелось бы сделать вывод, что гены, дающие такие мутации, продуцируют какие-то «морфогены», которые образуются в развивающемся ооците в качестве «инструкции» для раннего развития. Однако возможно также, что яйцо неспособно развиваться просто вследствие какого-то общего нарушения метаболизма. Подходящим примером служит группа из пяти различных дефектов, наследуемых по материнскому типу и определяемых генами, локализованными в Х-хромосоме Drosophila melanogaster: tin (cinnamon), dor (deep orange), amx (almondex), fu (fused) и r (rudimentary). Все эти признаки, помимо того что они наследуются по материнскому типу, вызывают у взрослых особей заметные морфологические отклонения, по которым они и получили свои красочные названия. Гемизиготные самцы, обладающие любой одной из этих мутаций, жизнеспособны и фертильны, так же как и гетерозиготные самки. Скрещивая мутантных самцов с гетерозиготными самками, можно получить гомозиготных самок, которые при скрещивании с мутантными самцами оказываются совершенно стерильными. Например, самки dor/dor продуцируют яйца, развитие которых прекращается на стадии гаструляции. Остальные четыре мутации также вызывают гибель зародышей, но на несколько другой стадии, чем мутации dor. В характере наследования всех этих пяти мутаций есть еще одна аномальная особенность. Скрещивая гомозиготных мутантных самок с нормальными самцами, можно получить некоторое число потомков. Все это – гетерозиготные самки, развившиеся из яиц, оплодотворенных сперматозоидом, несущим Х-хромосому. Ни один самец не выживает. По-видимому, присутствие аллеля дикого типа рассматриваемого гена может несколько снизить дефектность яйца, даже если этот аллель вносится сперматозоидом. Это, конечно, подразумевает, что по крайней мере часть генома зиготы активна во время гаструляции.
Мутации, затрагивающие органогенез
Как мы убедились выше, события, происходящие на ранних стадиях развития, в значительной степени зависят от информации, поставляемой материнским организмом. Однако примерно ко времени гаструляции важную роль в дальнейшем развитии начинает играть генетическая информация самого зародыша, и организм приобретает возможность контролировать свою судьбу. Для морфогенетических событий, следующих за формированием бластодермы, необходим синтез РНК и ее трансляция в белок. О необходимости генетической информации зародыша можно также судить по большому числу мутаций, оказывающих влияние на события, происходящие после гаструляции, и указывающих, таким образом, на существование генов, регулирующих эти события. У этих мутаций не наблюдается наследования по материнскому типу.
В качестве примера можно воспользоваться локусом N (Notch) у Drosophila melanogaster. Notch-сцепленная с полом доминантная мутация, являющаяся одновременно рецессивной деталью. Гомозиготные самки (N/N) и гемизиготные самцы (N/Y) гибнут на стадии зародыша спустя примерно 6 ч после оплодотворения. Это время соответствует моменту, непосредственно следующему за гаструляцией, когда зародыш проделал примерно четвертую часть эмбриогенеза. Гистологические и морфологические исследования, проведенные Паулсоном (Paulson) на этих зародышах, показали, что вентральная и латеральная эктодерма, которая обычно дает начало эпидермису и нервным клеткам, образует только клетки, похожие на нейробласты, а эпидермиса не образует вовсе. Поэтому можно предполагать, что локус Notch необходим для дифференцировки из зародышевой эктодермы нервной ткани в противовес эпидермальной. Оказалось, однако, что это несколько упрощенное объяснение. Шелленберджер (Shellenbarger) и его сотрудники выделили из локуса Notch температурочувствительный аллель и охарактеризовали его. Мухи, содержащие этот аллель, при температуре 22 °С развиваются нормально, тогда как при 29 °С наблюдается описанная выше гибель зародышей. В экспериментах со сдвигами температур, подобных рассмотренным в начале этой главы для мутантов shibire, было установлено, что к дефекту локуса Notch и недостаточности продукта этого локуса зародыш чувствителен не только в этот ранний период эмбриогенеза. При помощи кратковременных повышений температуры были выявлены еще три периода, когда мутантному организму жизненно необходима нормальная активность локуса Notch. Воздействия непермиссивной температуры на личинок второго или третьего возраста или на куколок приводили к летальному исходу. Более того, кратковременные воздействия (pulses) в определенные периоды третьей личиночной стадии или на стадии куколки вызывали такие же рубцы на глазах и дефекты щетинок, как у мутантов shibire. Поэтому, подобно shibire, мутация Notch обладает гораздо более широким действием, чем можно было бы ожидать на основании ее главного фенотипического проявления. Все структуры, на которые она действует, эктодермального происхождения, и в своих дальнейших экспериментах с гинандроморфами Шелленберджеру удалось показать, что наблюдаемые морфологические дефекты автономны и присущи только эктодермальным клеткам. Таким образом, снова, как и в случае мутаций shibire, создается впечатление, что один и тот же продукт мутанта Notch необходим разным клеткам эктодермального происхождения в течение нескольких дискретных периодов на всем протяжении развития. Следует также отметить, что для завершения одного и того же набора онтогенетических событий необходимы два разных гена, Notch+ и shibire+, и что отсутствие того или другого из них приводит к удивительно сходному комплексу нарушений. У домовой мыши (Mus musculus) имеется один сложный ген, Т-локус, который во многом сходен с только что описанной системой Notch. Первый аллель этого локуса был описан как аутосомный доминантный аллель, названный Brachyury (Т). У мышей, гетерозиготных по этому гену, Т/+, хвосты короткие. В гомозиготном состоянии (Т/Т) этот ген летален и зародыши гибнут внутриутробно. Вскоре после обнаружения этой доминантной мутации было установлено, что потомки от скрещивания гетерозигот (Т/+) с мышами дикого типа часто вовсе лишены хвоста. Оказалось, что эти бесхвостые мыши – результат рецессивных аллелей Т-локуса, часто встречающихся в природных популяциях мышей. Следовательно, эти бесхвостые мыши имели генотип T/t. От скрещиваний между такими гетерозиготными мышами T/t были получены бесхвостые мыши, размножающиеся в чистоте. Позднее было показано, что это обусловлено «сбалансированной системой леталей». Как оказалось, среди потомков от скрещивания гетерозигот летальными были не только гомозиготы Т/Т, чего следовало ожидать, но и гомозиготы t/t. Таким образом, выживали только гетерозиготы T/t, которые и давали следующее поколение. Эта интригующая ситуация была изучена как генетически, так и эмбриологически в ряде изящных работ Денна (Dunn), его учеников Беннета (Bennett) и Глюксон-Вэлша (Gluechsohn-Waelsch).