Выделение мембранных белков
Рефераты >> Биология >> Выделение мембранных белков

т.е. встроить очищенный белок обратно в мембрану. Функциональную активность некоторых мембранных белков, таких, как ионные каналы или транспортные белки, можно охарактеризовать и измерить только в реконструированных мембранных системах. Для других мембранных белков, выполняющих функции ферментов или рецепторов, полезную информацию часто можно получить, используя солюбилизированные препараты. Методы солюбилизации и реконструкции не только дают ценную информацию о функциях мембранных белков; их можно также использовать для того, чтобы перевести эти белки в состояние, удобное для проведения детального структурного анализа. Несомненно, детергенты будут играть ключевую роль в совершенствовании методов кристаллизации мембранных белков для последующего рентгеноструктурного анализа.

При солюбилизации детергентами возникает вопрос о возможности избирательного извлечения из мембраны именно тех компонентов, которые интересуют исследователя. Поэтому любой новый детергент желательно проверять на возможность избирательной экстракции определенных мембранных компонентов. Ни один из имеющихся детергентов не является универсальным.

Это обусловлено тремя обстоятельствами:

1) сильными различиями в действии детергентов даже на одни и те же мембранные белки;

2) отсутствием единой стратегии солюбилизации и реконструкции;

3) сложным характером взаимодействий между молекулами белков, липидов и детергентов, имеющих столь разную химическую природу.

Существуют определенные требования к детергентам, применяемым для солюбилизации и реконструкции. Детергент должен солюбилизировать, но не денатурировать белок и должен быть легко доступен в чистом виде; желательно, чтобы детергент был недорогим.

2.1 Солюбилизация мембранных белков

2.1.1 Периферические белки

В зависимости от задачи, которая стоит перед исследователем, мембрана может быть подвергнута мягкой или жесткой обработке.

При мягких условиях обработки используют как растворы с низкой ионной силой (например, 0,1-1 мМ ЭДТА, который удаляет двухвалентные катионы), так и буферы с высокой ионной силой, содержащие NaCl и КСl в концентрации более 1 М, с добавлением ЭДТА или без нее. Не следует вводить в эти растворы такие анионы, как йодид или дииодсалицилат, поскольку они обладают хаотропнымн свойствами и могут действовать подобно детергентам. рН среды может меняться в пределах от 6,0 до 8,0. В этих условиях необратимая денатурация интегральных или периферических белков маловероятна.

При более жесткой обработке из мембран можно удалить значительные количества белка (>50% от его общего содержания в мембранах), но, с другой стороны, такая обработка обычно приводит к денатурации, во многих случаях необратимой. В качестве примера можно привести обработку мембран 6 М гуанидинийхлоридом, 8 М мочевиной, 1 мМ п-хлормер-курибензоатом, разбавленными кислотами (рН 2,0-3,0) или щелочами (рН 9,5-11,0). В кислых условиях иногда наблюдается осаждение солюбилизированных белков, и поэтому чаще прибегают к щелочной обработке.

Необходимо иметь в виду, что в результате удаления значительных количеств белка мембрана может морфологически измениться, в частности может произойти ее выворачивание или замыкание в везикулы. Поэтому следует так подобрать условия последующего центрифугирования, чтобы гарантировать полное осаждение мембран. Если используется кислотно-щелочная обработка, следует как можно быстрее вернуть рН к исходным нейтральным значениям.

2.1.2 Интегральные белки

При обработке мембран для получения интегральных мембранных белков могут высвобождаться или активироваться протеазы. Поэтому нередко на этой стадии приходится добавлять ингибиторы протеаз, даже если они уже были введены на предыдущих этапах выделения мембран. Существуют разные и довольно сложные смеси ингибиторов, которые можно использовать в зависимости от чувствительности системы к действию протеолитических ферментов. Весьма полезным, но не универсальным агентом является ингибитор сериновых протеаз, фенилметилсульфонилфторид (ФМСФ). Этот реагент хранят в концентрации 100 мМ в изопропаноле или этаноле и добавляют в инкубационную среду до концентрации 100 мкМ. Следует помнить, что он имеет довольно короткое время жизни в водных средах (ПО и 35 мин соответственно при рН 7,0 и 8,0 и 25°С). Для ингибирования SH-протеаз может оказаться полезным 10 мМ тетратионат натрия.

3. Характеристика очищенных интегральных мембранных белков

Характеристика очищенных мембранных белков, даже самых простых, может составлять определенные трудности. Как и в случае растворимых белков, нужно определить число и молекулярную массу полипептидных субъединиц, их стехиометрию, размер и, возможно, форму молекулы, а также, если это необходимо, биохимическую активность.

3.1 Определение молекулярной массы субъединиц (электрофорез в ПААГ)

Электрофорез в полиакриламидном геле в присутствии додецил-сульфата натрия - это обычная методика, но в случае интегральных мембранных белков при ее применении возникают особые проблемы. В этом методе додецилсульфат связывается с полипептидными цепями, и комплексы белок-ДНС разделяются в полиакриламидном геле в соответствии с их стоксовыми радиусами, которые в большинстве случаев зависят от молекулярной массы. Молекулярную массу определяют, сравнивая электрофоретическую подвижность данного комплекса и известного стандарта. Однако связывание ДСН с неизвестным белком может качественно отличаться от связывания со стандартами, и тогда будет получен неправильный результат. Подобная ситуация наблюдается для интегральных мембранных белков с высоким содержанием неполярных аминокислотных остатков. Возможна и другая ситуация. Связывающийся с ДСН мембранный белок может находиться в не полностью развернутом состоянии, что тоже приведет к аномальному повышению электрофоретической подвижности из-за образования более компактного комплекса белок-ДСН. Все эти эффекты весьма существенны. Например, лактозопермеаза имеет кажущуюся молекулярную массу 33 000, если измерять ее с помощью электрофореза в ПААГ в присутствии ДСН; в действительности же, как показывают результаты генетического анализа, ее молекулярная масса равна 46 000. Еще одна проблема - возможное наличие четвертичной структуры. Некоторые мембранные белки агрегируют даже в присутствии ДСН. Например, гликофорин А или белок оболочки бактериофага М13 (или fd) при электрофорезе в полиакриламидных гелях с ДСН находятся в основном в виде димеров.

Итак, оценка молекулярной массы субъединиц сильно неполярных интегральных мембранных белков, определенная с помощью электрофореза в ПААГ с ДСН, может оказаться неверной. К несчастью, простая альтернатива этому методу отсутствует, и правильную величину часто получают либо по данным о полной первичной последовательности (обычно последовательности соответствующего гена), либо с помощью точного гидродинамического анализа.

3.2 Определение молекулярной массы нативного белка с помощью гидродинамических методов


Страница: