Влияние свойств поверхности ионообменных мембран на их электрохимическое поведение в сверхпредельных токовых режимах
Рефераты >> Биология >> Влияние свойств поверхности ионообменных мембран на их электрохимическое поведение в сверхпредельных токовых режимах

Для сравнения результатов хронопотенциометрии различных мембранных систем используется сходная с по смыслу разность потенциалов tot–Ohm, где первичный омический скачок потенциала находят как скачок потенциала между измерительными электродами, вызванный включением тока, в условиях, когда градиенты концентрации отсутствуют.

В третьей главе проведен сравнительный анализ равновесных, структурно-кинетических и транспортных характеристик исходных и модифицированных мембран.

Таблица – Равновесные и транспортные характеристики мембран

Мембрана

θо

Q,

мМ/млнабух

f2,

NaCl

km, мСм/см

1 M NaCl

km, мСм/см

1 M NaOH

МА-40

0.19±0.03

23±3

а3.200.08

к0.610.02

0.26±0.02

6.86±0.17

3.37±0.07

МА-40М1%

0.19±0.03

32±3

а3.18±0.08

к0.59±0.02

0.29±0.02

4.93±0.15

3.87±0.12

МА-40М5%

0.21±0.03

33±3

а3.16±0.08

к0.58±0.02

0.25±0.02

4.41±0.22

МА-40М15%

0.19±0.03

46±4

а3.20±0.08

к0.60±0.02

0.29±0.02

4.50±0.13

4.20±0.21

MA-41

0.28±0.03

а1.25±0.08

0.20±0.02

11.00±0.33

54.3±0.02

МК-40

0.22±0.03

22±2

к1.70±0.10

0.23±0.02

Nafion-117, окислительно-термическая подготовка

1.0

84±5

к1.31±0.05

0.12±0.02

CMX

1.0

46±4

к1.57±0.1

0.05±0.01

8.70±0.43

,θо – доля проводящей поверхности и угол смачивания набухшей мембраны, Q – полная катионообменная (к) или анионообменная (а) емкость, f2 – доля межгелевых промежутков в мембране, km – удельная электропроводность мембраны.

Из микрофотографий, полученных на электронном сканирующем микроскопе видно, что для мембран МА-41, МА-40 и МК-40 линейные размеры проводящих участков поверхности составляют 10-30 мкм (рисунок 1а) и сопоставимы с типичной толщиной диффузионного слоя в электромембранных системах. Доля проводящей поверхности мембраны после ее однократного набухания увеличивается в несколько раз по сравнению с не подвергавшимся этой процедуре образцом. Вместе с тем, даже для набухшей мембраны МА-41, характеризуемой наибольшим значением , этот параметр равен не более 28 ± 3%. Установлено, что доля полиэтилена на поверхности МА-40, МК-40, МА-41 составляет 72-83% при его объемной доле внутри мембраны 30-40%. Размеры неоднородностей поверхности гомогенных мембран имеют порядок 1 мкм, что значительно меньше толщины диффузионного слоя. Их поверхность может рассматриваться как однородная (рисунок 1б).

а

б

в

Рисунок 2 – Содержание элементов C, N, O в ионообменном материале (а), (б) и полиэтилене (в) мембраны МА-40М15%

Из данных рентгеноспектрального микроанализа, совмещенного с электронной микроскопией, а также результатов определения доли межгелевых промежутков с использованием микрогетерогенной модели (таблица) следует, что модифицирование полиэлектролитным комплексом не нарушает исходной структуры поверхности и объема мембраны МА-40. Оно не затрагивает полиэтиленового связующего и протекает в гранулах ионообменной смолы, находящихся в приповерхностном слое мембраны толщиной 40-80 мкм. Глубина проникновения ПЭК в мембрану по данным рентгеноспектрального анализа (рисунок 2) совпадает с оценками, сделанными по формуле (1) с использованием результатов измерения электропроводности исходной и модифицированной мембран в растворах NaOH. Уменьшение интенсивности пика, фиксируемого на ИК-спектрах в области 3380 см–1, заметный рост электропроводности в щелочных растворах и увеличение угла смачивания 0.02 М раствором NaCl влажной мембраны (таблица) показывают, что наличие ПЭК в приповерхностных слоях приводит к увеличению гидрофобности и снижению содержания на поверхности МА-40М протонированных вторичных и третичных аминогрупп при сохранении той же полной обменной емкости мембраны по анионам (таблица). Наличие в этих мембранах обменной емкости по катионам (таблица), а также атомов кислорода в ионообменном материале, регистрируемых в условиях вакуума методом рентгеноспектрального микроанализа, указывает на присутствие в МА-40 и МА-40М карбонатных и/или карбаматных групп. Эти группы могут образовываться как в результате реакций гидролиза ПЭК, так и вследствие взаимодействия аминов ионообменного материала мембраны с углекислым газом, поглощаемым из воды и воздуха. По-видимому, наличие этих групп и обеспечивает взаимодействие модифицирующего полиэлектролита с ионообменным материалом мембраны. В результате мембраны МА-40М стабильно функционируют без изменения свойств в течение длительного времени, в том числе и при интенсивных токовых режимах.


Страница: