Взаимодействия белков с РНК – структурный компьютерный анализ
Рефераты >> Биология >> Взаимодействия белков с РНК – структурный компьютерный анализ

Для уменьшения расчетных затрат при численном интегрировании на сетке используются только те точки, в которых функция Pm принимает наибольшие значения, а значения функции Px в этих точках рассчитываются с помощью процедуры интерполяции [22].

Применяя преобразование Фурье и теорему Парсеваля для уравнения (1) можно получить выражение для функции вращения в обратном пространстве [37]:

, (2)

где h = (h,k,l) обозначает миллеровские индексы, а - транспонированную матрицу оператора . Действие  на |Fm(h)|2 будет в общем случае приводить к возникновению точек в обратном пространстве, которые не описываются целочисленными индексами (h,k,l). Значения |Fm(h)|2 в таких точках могут быть получены с помощью так называемой интерференционной функции G [2]:

(3)

Анализ максимумов R() позволяет не только выявить наиболее вероятные ориентации модели в ячейке кристалла неизвестной молекулы, но и, в случае нескольких молекул в независимой части элементарной ячейки, найти операции точечной некристаллографической симметрии, связывающие ориентации этих молекул.

2.1.1.2. Функции трансляции

Вторым этапом решения задачи молекулярного замещения является определение положения ориентированной молекулы в ячейке кристалла. Критерием соответствия положения модели и неизвестной молекулы служит функция трансляции. Существует много вариантов определения функции трансляции, в которых используются как функции Паттерсона [3, 36] так и коэффициенты корреляции между экспериментальными и расчетными амплитудами структурного фактора [20]. Функция трансляции может также включать фазовую информацию [4] и ограничения на возможную кристаллическую упаковку молекул [22]. Основной целью при этом является нахождение глобальных максимумов функции трансляции в зависимости от вектора трансляции v, описывающего положение модели в элементарной ячейке. Эта задача обычно решается с помощью процедуры поиска на сетке разбитой по компонентам вектора v.

Функция трансляции, в которой используется перекрывание между экспериментальной и расчитанной по модели функциями Паттерсона имеет общий вид:

, (4)

где Sj обозначает операторы симметрии данной группы [15].

Наличие экспериментальной фазовой информации может существенно повысить отношение сигнал-шум в пиках функции трансляции, даже если экспериментальный набор фаз содержит значительные ошибки (например, в тех случаях, когда имеется только одна изоморфная производная). В формулировке Рида и Ширбека [35] функция трансляции, включающая фазовую информацию, определяется следующим образом:

, (5)

где ρx и ρm – функции экспериментальной и модельной электронной плотности, соответственно.

Кроме правильной ориентации модели, к основным факторам влияющим на точность решения функции трансляции относятся качество и полнота модели и рентгеноструктурных данных, диапазон разрешений, а также критерий отбора в соответствии с которым те или иные структурные амплитуды включаются в расчет. Также как и для функции вращения, исключение слабых рефлексов из экспериментального набора данных (без заметного ущерба для полноты набора) может несколько снизить уровень шума функции трансляции [7].

После того как решения функции трансляции получены их уточняют с помощью процедуры оптимизации ориентации и положения модели как твердого тела по методу сопряженных градиентов (например, процедура FIT в AmoRe [11] или RIGID_BODY в CNS [6]).

2.1.1.3. Методы 6-мерного поиска

При использовании моделей плохого качества (например, в случае низкой гомологии) или моделей описывающих лишь малую часть неизвестной структуры часто возникает ряд проблем, затрудняющих решение задачи молекулярного замещения обычными методами. Значительные ошибки функции вращения, неизбежно возникающие в таких случаях, усугубляют собственные ошибки функции трансляции и приводят либо к полному отсутствию правильных решений, либо к тому, что эти решения оказываются среди максимумов, лежащих на уровне шума и нет достоверных критериев позволяющих однозначно выделить их среди прочих.

Единственным на сегодняшний день общим подходом, позволяющим решать вышеперечисленные проблемы и до определенной степени расширить границы применимости метода молекулярного замещения, является отказ от разделения задачи на поиск решений функций вращения и трансляции и применение процедуры 6-мерного поиска с одновременным варьированием как углов Эйлера (α,β,γ), так и компонент вектора трансляции (vx,vy,vz). Но, несмотря на значительный прогресс вычислительной техники, ни в одной из существующих программ, включая самые современные, 6-мерный поиск не проводится напрямую, как систематический поиск на 6-мерной сетке. Таким образом, ни одна из существующих программ не гарантирует нахождения абсолютных максимумов объединенной функции вращения-трансляции.

Не так давно, двумя группами независимо были предложены стохастические алгоритмы 6-мерного поиска, которые позволили создать программы, ставшие стандартным инструментом в рентгеновской кристаллографии макромолекул:

В работе Киссинджера и др. [26] был применен так называемый эволюционный алгоритм, который принадлежит к семейству алгоритмов стохастической оптимизации, включающему такие методы как Монте-Карло [28] и медленный отжиг [25].

Генетический алгоритм, независимо предложенный Чангом и Льюисом [14], основан на том же самом принципе, что и эволюционный и отличается от последнего лишь некоторыми деталями реализации. Подобный подход применялся также для разработки процедуры поиска положений тяжелых атомов в тяжелоатомных производных кристаллов макромолекул [13] и в прямых методах расчета фаз для кристаллов вирусных частиц [29].

Эволюционный алгоритм использует принцип естественного отбора для нахождения оптимальных решений. Вначале генерируется набор случайных решений, задающих одновременно и ориентацию и положение модели в элементарной ячейке. Затем рассчитываются структурные факторы Fm для каждого решения и производится отбор лучших решений исходя из коэффициента линейной корреляции [26].

Отобранные решения сохраняются и используются для создания нового набора с тем же количеством элементов, что и в предыдущем. Недостающие элементы нового набора получают, внося в ориентации и положения отобранных решений случайные изменения в соответствии с нормальным распределением. Таким образом, плотность распределения элементов нового набора уже не будет равномерной, а будет иметь максимумы в окрестностях отобранных решений. Затем снова происходит расчет структурных факторов Fm, отбор лучших решений, создание следующего набора, и так далее, пока не будет получено решение с некоторым оптимальным значением коэффициента линейной корреляции. На последней стадии, для лучшего отобранного решения проводится оптимизация ориентации и положения модели как твердого тела по методу сопряженных градиентов [33].


Страница: