Биологическая эволюция и морфогенез
Биологическое разнообразие нашей планеты недвусмысленно указывает на успехи биологической эволюции. И хотя это стадия эволюции, качественно отличная от химической, ее общие принципы остаются теми же и явственно проступают на всех ступенях филогенеза. Прежде всего это относится к физико-химическим особенностям молекулярного взаимодействия. Если в условиях ограниченности ресурсов на образование какого-либо вещества тратится меньше времени, то это вещество и становится доминирующим в конкретной ситуации. Скорость реакции является признаком, по которому она отбирается в ходе эволюции из множества других сходных химических реакций.
Сходство биогенных и абиогенных форм материи особенно заметно в способности изменять свои свойства в зависимости от условий среды. Эта способность проявляется в виде переходов между устойчивыми состояниями системы при воздействиях факторов окружающей среды, если только они не приводят к разрушению системы.
Биологические системы являются открытыми нелинейными системами, способными к самоорганизации. Они функционируют за счет поступления энергии извне. При недостатке энергии они становятся менее организованными и могут самопроизвольно разрушиться. Организация, т.е. снижение собственной энтропии системы, происходит за счет повышения энтропии окружающей среды. Разрушение системы также сопровождается повышением энтропии. Можно сказать, что разрушение происходит само собой, а любое созидание требует затраты энергии.
Именно на этих фундаментальных основах природной целесообразности и происходило последующее усложнение и совершенствование исходно примитивной биологической системы.
Почему в ходе эволюции появился необычайно широкий ассортимент различных форм жизни? В принципе, могла бы существовать одна-единственная открытая биологическая система, поскольку в каждой из ныне существующих популяций как основа, так и само качество жизни, в целом одинаковы.
Возможно, так оно и было сначала. Среди первых представителей жизни на Земле, так называемых протобионтов, скорее всего особого разнообразия не было. Разнообразие сложилось постепенно, когда в результате накопления биомассы первичных организмов стало возможным освоение все большего пространства. И уже в зависимости от разных условий местообитаний у протобионтов могли возникать зачатки внутривидовой изменчивости по морфофизиологическим показателям.
Интересно, что этот эволюционный период оказался наиболее продолжительным, заняв едва ли не 85% времени всей биологической эволюции. Так, если самые древние одноклеточные организмы появились приблизительно 3, 5 млрд лет назад, а Земля образовалась за 1–1, 5 млрд лет до возникновения первых устойчивых форм жизни, то все многообразие живой природы сформировалось в кембрийском периоде палеозойской эры, т.е. 530–540 млн лет назад и за исторически короткий по сравнению с предыдущими архейской и протерозойской эрами срок в 5–10 млн лет.
Понятно, что кембрийский «скачок» был обусловлен комплексом значимых для эволюционного развития изменений условий. Прежде всего это тектонические сдвиги и перемещения материков, изменивших ось вращения нашей планеты, а также накопление в земной атмосфере кислорода, что благоприятствовало переходу к более эффективному для жизнедеятельности аэробному метаболизму. Кроме того, увеличение концентрации кислорода способствовало снижению интенсивности ультрафиолетового излучения, что позволило протобионтам заселять не только глубины океана, но и осваивать иные ареалы.
Протобионты оказались в непривычных для них условиях внешней среды, как географических, так и физико-химических, зависящих от геологических характеристик конкретных районов. Подобные стрессорные воздействия, произошедшие незадолго до начала кембрийской эпохи, явились для древних форм жизни мощным стимулом и дали толчок появлению новых форм.
Следует иметь в виду, что это было возможно лишь при наличии накопленных точечных или хромосомных мутаций, зафиксированных в геноме. Расширению генома могла способствовать вставка в него чужих генетических текстов, например при проникновении в клетку ретровирусов, а также реализация разнообразных механизмов образования полиплоидных форм. Генетическое разнообразие эукариот, имеющих оформленное ядро, могло достигаться с помощью хромосомных рекомбинаций, поскольку ранние признаки полового диморфизма начали появляться (в частности, у водорослей) еще задолго до кембрия, более 2 млрд лет назад.
Если бы условия существования оставались неизменными, то накопленные генетические изменения никогда бы не реализовались, поскольку биологическая структура для существования в тех или иных условиях задействует вполне определенный и оптимальный набор свойств, и поэтому ни в каких генетических вариациях не нуждается.
Пример с aэpoбным метаболизмом в условиях, когда появился кислород, убедительно демонстрирует ограниченность, неэффективность анаэробного обмена веществ, который доминировал у господствовавших в докембрийскую эпоху форм бактерий и водорослей.
Анаэробиоз тормозил эволюционное развитие (во всяком случае, не способствовал ему). Но это не значит, что в течение этой длительной филогенетической стадии в геноме одноклеточных не сумели накопиться потенциально правильные генетические сочетания, которые затем стали нужными в новых обстоятельствах, в частности в условиях аэробного окисления.
Это не противоречит генетическим законам, поскольку мутации, в том числе нейтральные, наследуются. Многие из них ничего не меняют в структурах белков, т.е. ни к каким последствиям для организма в данных конкретных условиях они не приводят. Кроме того, мутация может быть скрыта, оставаясь в пределах видовой нормы, при точечных заменах нуклеотидов. Например, изменение кодирующего аминокислоту кодона может и не повлиять на свойства белка, если оно не затрагивает активного центра фермента, состоящего, как правило, из небольшого числа аминокислот.
В то же время вполне возможно и специфическое для определенного клеточного генома проявление скрытых до поры мутаций при стрессе. Это уже приведет к ускоренному формированию новых признаков, обусловленных не одновременным возникновением новых мутаций, а ранее накопленными изменениями в генетическом аппарате.
Здесь прослеживается явная аналогия с химической эволюцией, когда возникновению жизни предшествовал длительный период накопления потенциально возможных сочетаний различных химических соединений друг с другом, необходимых для всех структурных элементов новой системы. Ход эволюционного развития нашей планеты определялся сменой условий на ней, под которые подстраивались все физические и химические процессы. Можно представить эволюционный процесс как предварительное и длительное накопление потенциально полезных химических реакций и соединений веществ с образованием структурированных систем, которые ожидают подходящих условий, чтобы оказаться востребованными.
Эволюция часто прибегает к перебору вариантов, хорошо себя зарекомендовавших во многих системах. Об этом наглядно свидетельствует сходство молекулярных механизмов, а в ряде случаев и функций, у разных организмов. Некоторые из них в практически неизменном виде сохранились на всех иерархических уровнях эволюции – от самых древних синезеленых и пурпурных бактерий до современных млекопитающих. Так, например, в системах переноса электронов и окислительного фосфорилирования задействованы по сути аналогичные и лишь незначительно модифицированные белки-переносчики: светочувствительный белок сетчатки глаза (родопсин), фотосинтетические хромофоры архебактерий (бактериородопсин), пигменты водорослей (фукоксантин диатомовых и бурых или фикоэритрин красных водорослей) и растений (хлорофилл), гемоглобин эритроцитов или мембранные митохондриальные белки, участвующие в процессах клеточного дыхания (цитохромы) и т.д.