Биогенез мотивы и феномены возникновения жизни
Как обычно, для решения какой-либо проблемы, в том числе и выбора оптимальных условий для биогенеза, существует как минимум два варианта. Одним из которых является направленность любой системы к достижению полной молекулярной комплементарности, что тем самым увеличивало бы энергию связывания. Но в биогенетическом аспекте это мало подходило для многих молекулярных структур, а для полимеров пептидной или нуклеотидной природы и вовсе оказывалось неприемлемым, из-за особенностей их пространственной ориентации, которая определяется слабыми водородными связями. Подобные молекулярные структуры в лучшем случае были способны к энергетически выгодной конформационной конфигурации, когда гидрофобные участки оказывались внутри „скрученной“ молекулы.
Судя по всему, для обеспечения стабильности молекулярной структуры в водном растворе подобные приёмы оказывались недостаточными, так как в итоге природа воспользовалась иным, более изящным и как оказалось единственно верным в той ситуации сценарием. То есть идеальные условия для образования и сколько-нибудь длительного существования нужных для биогенеза молекул могли быть созданы только при наличии „комфортной“ среды, которая бы отличалась от агрессивного внешнего окружения.
По всей вероятности, в определённый период химической эволюции такой возможностью стали обладать фосфолипиды, из молекул которых при нахождении в водной среде может происходить самосборка бислойной мембраны. На самом раннем этапе они скорее всего были представлены примитивными липосомальными микросферами. Этого было вполне достаточно, чтобы ход химических реакций сделать более независимым, а условия их протекания сравнительно мягче, нежели в открытом пространстве. С большой долей уверенности можно предположить, что такие структуры являются самым древним защитным барьером и прообразом плазматических и прочих клеточных биомембран. По своей пространственной организации замкнутая сферическая форма липидной мембраны соответствует наименьшему значению энергии Гиббса, то есть термодинамически выгодна по сравнению с другими возможными расположениями молекул. Кроме того, конформационная специфика бислойной фосфолипидной оболочки соответствует жидкокристаллическому состоянию, что предусматривает автономность по отношению к окружающей среде и одновременно селективную и регулируемую связь с этим внешним окружением.
Естественно, что этот уникальный вариант не мог не закрепиться в ходе последующей биологической эволюции и не создать предпосылок для формирования механизмов гомеостаза, как одного из основополагающих принципов феномена жизни. Что указывает на внутреннее подобие или фрактальность эволюции, поскольку обеспечение постоянства внутренней среды в виде защищённой внутренней полости с завидным постоянством повторяется на всех иерархических уровнях биологической системы. Сам факт подобной симметрии, проходящей сквозь разные временные и пространственные масштабы, имеет важный биологический смысл. Поскольку касается не только гомеостаза, но затрагивает и другие, например регуляторные аспекты функционирования биологических систем, что свидетельствует о целесообразности и рациональной предписанности естественных процессов. Недаром особенности их поведения подчинены не слепому случаю, а выстраиваются по фрактальному принципу в виде алгоритмической матрицы.
Безусловно, в предбиологическом периоде, как впрочем и на ранних этапах биогенеза, случай очень важен, но лишь для первоначального получения „нужных“ молекул с определёнными свойствами, которые сами по себе от случайности не зависят. Видимо таким образом, попадая в липосомальную микросферу, органические молекулы и могли образовывать оптимальные и термодинамические выгодные межмолекулярные взаимодействия, недоступные в менее благоприятных открытых условиях. И если при этом действительно формировались устойчивые связи, то у таких химических веществ появлялось больше шансов сохранить свою биогенетически верную конфигурацию и продлить своё существование. Кроме того, из-за избытка свободной энергии, присущего органическим соединениям, их концентрация в термодинамически равновесной системе становится минимальной. Это обусловлено преобладанием деструктивных процессов над синтетическими при нахождении органических макромолекул во внешней водной среде, стремящейся к максимальным значениям энтропии. Подобное смещение направленности химических реакций приводит к низкой итоговой плотности макромолекул в растворе и делает последующую полимеризацию достаточно проблематичной. Чего нельзя сказать об открытой замкнутой системе, в которой синтез органических веществ лимитирован только источником энергии и размерами внутренней сферической полости.
Однако закрепить свой „химический“ успех, то есть передать полученный опыт в виде информации о своей структуре для её последующего воспроизведения, было невозможно, из-за отсутствия в ту древнюю эпоху необходимых каталитических реакций. И каждый раз, по мере неизбежной диссимиляции, приходилось заново, с помощью затратного по времени метода проб и ошибок, выстраивать оптимальную супрамолекулярную устойчивую форму. Хотя вне всякого сомнения, вероятность нахождения сильного и потому эффективного решения резко возрастала уже на том примитивном уровне гомеостаза, который был доступен в замкнутом пространстве, образованном первичной мембраной. И не в последнюю очередь за счёт экономии времени и ресурсов при гомеостатической „фильтрации“ химических веществ по их качественным, то есть пространственным, или количественным параметрам. Что позволяло отбраковывать заведомо неподходящие, либо недостаточно оптимальные молекулярные сочетания, но ещё не приводило к упорядоченной закономерности и периодичности возникновения удачных структурных форм.
Тем не менее, динамика подобного вероятного сценария не могла не способствовать или не ускорить появление изящного способа воспроизведения исходной наследственной информации в виде матричного копирования свойств и особенностей существующей структуры. Что давало возможность для её быстрого восстановления и самоорганизации, но пока без такого важного свойства живых структур, как хранение информации в закодированном виде. Хотя уже само по себе наличие комплементарной репликации (феномен „слепка“ или матричное, по образцу, копирование линейной последовательности нуклеотидов) явилось качественным переходом химической эволюции на свою следующую ступень или отправной точкой для самой ранней стадии биогенеза, непосредственно предшествующей процессу возникновения жизни.
Следовательно, можно с определённой долей уверенности предположить, что стадия накопления „правильного“ для биогенеза химического потенциала сумела подготовить эволюционное появление молекул с самыми древними и примитивными свойствами энзимов. Так, отдельными ферментными функциями на определённом этапе эволюционного усложнения могли обладать, как „случайные“ олигопептиды, так и рибонуклеотидные последовательности в виде фрагментов РНК, что судя по всему является более вероятным филогенетическим событием [1, 3].