Белки нервной системы
Рефераты >> Биология >> Белки нервной системы

Функции белка Вольфграма и МАГ неизвестны, если не считать общих соображений об их участии в организации структуры миелиновых оболочек.

7. НЕЙРОСПЕЦИФИЧЕСКИЕ БЕЛКИ ГЛИИ

Белок S‑100 содержится и в нейронах, и в глиальных клетках, причем доля его в последних велика – около 85%.

В 1967 г. из а2-глобулинов мозга был выделен нейроспеци-фический а2-гликопротеин с молекулярной массой 45 кД. В мозге человека он появляется на 16‑й неделе эмбрионального развития. Углеводные компоненты его включают глюкозамин, маннозу, глюкозу, галактозу, галактозамин и N‑ацетилнейраминовую кислоту. а2-гликопротеин локализован только в астроцитах, но отсутствует в нейронах, олигодендроцитах и в клетках эндотелия. Поэтому его можно рассматривать как один из специфических маркеров астроцитов.

Другой белок опять-таки характерен только для клеток глии. Он был выделен из богатых фиброзными астроцитами областей головного мозга человека, а впоследствии – в значительно больших количествах – из мозга больных множественным склерозом. Это вещество было названо глиальным фибриллярным кислым белком. Он специфичен только для ЦНС, а в ПНС он не обнаружен. Содержание его в белом веществе головного мозга превышает таковое в сером веществе. В онтогенезе мышей максимальное содержание GFA наблюдается между 10‑м и 14‑м днями постнатального развития, т.е. совпадает по времени с периодом миелинизации и пиком дифференцировки астроцитов. Молекулярная масса белка составляет 40–54 кД. Глиальная локализация этого белка также позволяет использовать его как «маркерный» белок для этих клеток.

Функции а2-гликопротеина и белка GFA неизвестны.

Что касается белков микроглии, то следует иметь в виду участие этих клеток в построении миелина. Многие из белков миелина, выявлены в микроглии.

В глии представлены также многие рецепторные и ферментные белки, участвующие в синтезе вторичных мессенджеров, предшественников нейромедиаторов и других регуляторных соединений, которые могут быть отнесены к нейроспецифическим.

8. ИНТЕНСИВНОСТЬ МЕТАБОЛИЗМА БЕЛКОВ В РАЗЛИЧНЫХ ОТДЕЛАХ НЕРВНОЙ СИСТЕМЫ

Современное представление о динамическом состоянии белков в нервной ткани было установлено благодаря применению изотопов А.В. Палладиным, Д. Рихтером, А. Лайтой и другими исследователями. Начиная с конца 50‑х и в течение 60‑х годов при изучении метаболизма белка использовались различные предшественники их биосинтеза, меченые С, Н, S. При этом было показано, что белки и аминокислоты в головном мозге взрослого животного метаболируют, в общем, более интенсивно, чем в других органах и тканях.

Например, в опытах in vivo при применении в качестве предшественника равномерно меченой С‑1–6‑глюкозы оказалось, что по интенсивности образования аминокислот за счет глюкозы ряд органов можно расположить в следующем порядке:

головной мозг > кровь > печень > селезенка и легкие > мышца.

Аналогичная картина наблюдалась при использовании и других меченых предшественников. Показано, что из С-ацетата в головном мозге интенсивно синтезируется углеродный скелет аминокислот, особенно моноаминодикарбоновых кислот и прежде всего глутамата; из моноаминомонокарбновых кислот достаточно интенсивно образуются глицин, аланин, серии и др. Следует отметить, что особое место в метаболизме аминокислот занимает глутамат. В опытах in vitro с использованием меченого глутамата показано, что если в реакционную среду гомогената мозга добавить только одну глутаминовую кислоту, то она может быть источником образования 90–95% аминокислот.

Были проведены многочисленные исследования по изучению различий в интенсивности метаболизма суммарных и индивидуальных белков с помощью меченых предшественников. В опытах in vivo при использовании С-глутамата было показано, что он включается в 4–7 раз интенсивнее в белки серого вещества, чем белого. Во всех случаях интенсивность обмена суммарных белков серого вещества больших полушарий мозга и мозжечка оказалась значительно выше, чем белого вещества тех же отделов мозга, какой бы предшественник ни применялся при исследовании. При этом различие интенсивности обмена суммарных белков серого вещества по сравнению с белками белого вещества имеет место не только в норме, но, как правило, и при различных функциональных состояниях организма.

Проводились также исследования по изучению различий в интенсивности включения меченых предшественников в суммарные белки центральной и периферической нервной систем. Оказалось, что несмотря на существенные различия в составе, метаболизме и функциональной деятельности различных отделов ЦНС и ПНС, а также на сложность и гетерогенность белков, входящих в их состав, суммарные белки ЦНС взрослых животных обновляются значительно интенсивнее, чем суммарные белки ПНС.

Много исследований посвящено метаболизму белков в различных отделах головного мозга. Например, при изучении распределения радиоактивности в головном мозге после введения С-глутамата оказалось, что на долю серого вещества больших полушарий приходится 67,5 радиоактивности, мозжечка – 16,4, продолговатого мозга – 4,4, на долю других отделов головного мозга – около 11,7. В опытах in vivo при введении взрослым животным различных предшественников, а именно С-глутамата, С‑1–6‑глюкозы, С‑2‑ацетата, оказалось, что по интенсивности включения метки в суммарные белки различные отделы нервной системы располагаются в такой последовательности: серое вещество больших полушарий и мозжечка > таламус > зрительный бугор > средний и промежуточный мозг > Варолиев мост > продолговатый мозг > белое вещество больших полушарий и мозжечка > спинной мозг > седалищный нерв > миелин.

Проводились также исследования, посвященные изучению интенсивности обмена белков в различных отделах ЦНС с использованием авторадиографического метода. Получена аналогичная картина: наиболее интенсивное включение метки имело место в белках серого вещества больших полушарий и мозжечка, медленное – в спинном мозге и еще более медленное – в белках седалищного нерва. Что же касается подкорковых образований, то интенсивность обмена их белков была средней между скоростью обновления белков серого и белого вещества больших полушарий и мозжечка. Между отдельными подкорковыми образованиями наблюдаются менее существенные различия, чем между метаболической активностью белого и серого вещества.

Исследовались также суммарные белки различных областей коры больших полушарий – лобной, височных, теменной и затылочной. По данным Вэлша и ВАПалладина, более высокой обновляемостью обладают белки сенсорной области коры, а более низкой – белки височной доли коры больших полушарий. Эти же авторы показали, что более высокая обновляемость белков характерна для филогенетически более молодых и функционально более активных структурных образований мозга.

На фоне, в общем, высокой обновляемое белков мозга особого упоминания заслуживают немногие довольно инертные белки. К ним относятся гистоны нейронов неокортекса-катионные белки хроматина этих клеток. Во взрослом организме нейроны-неокортекса не размножаются. В соответствии с этим темп обновления гистонов очень незначителен. Среднестатистические сроки обновления половины молекул некоторых фракций гистонов измеряются десятками суток.


Страница: