Белки нервной системы
Рефераты >> Биология >> Белки нервной системы

Пептидная цепь НФ состоит из 91–95 а.о. Интересно, что 85–90% аминокислотных остатков в составе нейрофизинов идентичны у человека и исследованных видов животных. Иммуно-химическими методами установлено, что фракция НФ1 синтезируется в паравентрикулярных ядрах, а НФИ – а супраоптическом ядре.

В интактном состоянии нейрофизины находятся в прочном комплексе с окситоцином или вазопрессином. Связь НФ с этими гипофизарными гормонами нековалентная и осуществляется фрагментом молекулы, находящимся в пределах 37–54‑го аминокислотных остатков полипептидной цепи НФ. В нормальных условиях существует определенное молярное соотношение между НФ и гипофизарными гормонами. Так, в гипофизе это соотношение между НФ и окситоцином равно 1:10, а в гипоталамусе – 1:14.

Применение метода ЯМР позволило показать, что происходит очень быстрый обмен между комплексами НФ-окситоцин или НФ-вазопрессин и свободным гормоном.

В последнее пятилетие обнаружено, что нейрофизины отнюдь не являются единственными представителями белков-носителей пептидных регуляторов. Установлено существование разнообразных по структуре белков, которые находятся в тесной, но нековалентной связи с опиоидными пептидами, корти-колиберином, тафцином и др., защищая их от расщепления протеазами в жидкостях организма.

На примере гликопротеинов симпатических нейронов в культуре показана возможность их секретирования #в среду после ряда модифлкаций как белковой, так и углеводной части молекул. Содержащие маннозу и несиалированные гликопротеины PI и РЗ после сиалирования и включения в плазматическую мембрану модифицируются в гликопротеины В1 и ВЗ, которые в ходе дальнейших модификаций превращаются, соответственно, в гликопротеины В2 и В4 а затем секретируются в форме растворимых производных S2 и S4. Процессы модификации гликопротеинов ускоряются при выбросе медиаторов. Производные гликопротеина В1 иммунологически идентичны большому поверхностному гликопротеину различных типов нейронов центральной и периферической нервной системы, увеличение концентрации которого индуцируется фактором роста нервов.

К секретируемым белкам относятся и некоторые из эпендименов – а, р и у. Нейроспецифичны только р и у. Они обнаружены в мозге рыб, амфибий, крыс. Под действием специфической протеазы эпендимин р превращается в эпендимин у и секретируется из нейронов. В опытах с золотыми рыбками показано, что этот процесс усиливается при адаптации рыб к новым условиям плавания, что позволило предположить участие эпендиминов в механизмах формирования долговременной памяти.

Приводя примеры регуляторных белков нервной ткани, следует особо остановиться на нейротрофинах. Нейротрофины определяются вообще как факторы, стимулирующие дифференциацию нейронов, поддерживающие их выживание, индуцирующие рост дендритов и аксонов в направлении клеток-мишеней. Перечисленные процессы управляются большим числом факторов различной природы. Однако среди них важную роль играют интенсивно изучаемые белковые соединения. Прежде всего – семейство белков – факторов роста и трофики нервов. Отнесение их к категории нейроспецифических белков не безоговорочно: их содержание велико, например, в слюнной железе самца мыши, ядах некоторых змей и в некоторых других периферических тканях. Тем не менее, их содержание и функции в нервной ткани настолько специфичны, что они требуют краткого рассмотрения.

К настоящему времени наиболее изучены три нейротрофина, близких друг другу по структуре: NGF, BDNF и NT‑3. Они представляют собой относительно небольшие белки. В частности, минимальная по размеру активная форма NGF состоит из двух субъединиц по 13.25 кД. Различные нейротрофины имеют определенную специализацию: NGF

– «опекает» нейроны периферических симпатических ганглиев, а также холинергические нейроны переднего мозга, BDNF

– часть моторных и сенсорных нейронов, a NT‑3 – нейроны гиппокампа. Трофическая функция и стимуляция роста аксонов нейротрофинами имеют особое значение в онтогенезе, при повреждениях ЦНС, а также в некоторых критических состояниях, например при эпилептических судорогах. В онтогенезе мозга достижение тем или иным аксоном клетки-мишени ведет к ретроградному сигналу, осуществляемому нейротрофином, который обеспечивает выживание соответствующего нейрона, Нейроны, аксоны которых не достигают мишени, погибают.

Нейросекреторные гранулы гипоталамуса продуцируют ряд гликопротеинов, выполняющих специфические регуляторные функции. А.А. Галояном и сотр. в 1971г. выделены и далее всесторонне исследованы гликопротеины, являющиеся коронаррасширяющими и коронарсуживающими гормоиоподобиыми факторами с молекулярным весом около 20–30 кД. Они не имеют строгой мозговой специфичности: в небольших количествах они обнаружены в сердце, скелетных мышцах, надпочечниках, печени.

В гипоталамусе вырабатывается и секретируется также ряд относительно низкомолекулярных пептидных регуляторов – так называемых рилизинг-гормонов. Нейропептиды имеют в качестве предшественников пептиды, которые по размерам следует относить к белкам, – так называемые протопептиды с Мг 20–50 кД. Многие из них гликозилированы.

Белок поверхности нейронов р-АРР также является источником белка-регулятора. Отщепляемая внешняя часть белка выходит в межклеточную жидкость и индуцирует образование новых отростков и нервных окончаний, участвуя в формировании памяти. При болезни Альцгеймера этот процесс искажается.

6. БЕЛКИ МИЕЛИНА

Белковый состав миелина своеобразен, но существенно проще, чем в нейронах и глиальных клетках.

В миелине велика доля катионного белка – КБМ. Он представляет собой относительно небольшой полипептид с Мг = 16–18 кД. КБМ содержит значительную долю диаминокислот и в то же время около половины составляющих его аминокислот – неполярные. Это обеспечивает, с одной стороны, тесный контакт с гидрофобными компонентами липидов миелина, а с другой стороны, определяет его способность к образованию ионных связей с кислыми группировками липидов.

Необычайно высокой гидрофобностью характеризуются так называемые протеолипидные белки Фолча, составляющие большую часть остальных белков миелина. В свою очередь, главный из этих белков – липофилин, в котором 2/3 составляющих аминокислот – неполярные. Интересна определенная избирательность контактов липофилина с липидами, например, вытеснение холестерина из его окружения. Полагают, что это связано с особенностями вторичной структуры липофилина.

Довольна велика также доля так называемого белка Вольфграма – кислого протеолипида, довольно богатого остатками дикарбоновых аминокислот, и, в то же время, содержащего около половины остатков неполярных аминокислот.

Наконец, из нескольких десятков других белков миелина отметим миелинассоциированный гликопротеин, расположенный на экстраделлюлярной поверхности мембран; он встречается, кроме того, в олигодендроцитах до миелинизации и в миелине периферической нервной системы. В ЦНС человека он представлен тремя полипептидными цепями с Мг=92, 107, 113 кД, а в периферической нервной системе – одним белком с Мг=107 кД. МАГ относится к гликопротеинам с относительно низким содержанием углеводных остатков – около 30% от массы молекулы, но содержит характерный для гликопротеинов набор углеводов: N‑ацетилглюкозамин, N‑ацетилнейраминовая кислота, фукоза, манноза и галактоза. Для белковой части молекулы характерно высокое содержание глутаминовой и асларагиновой кислот.


Страница: