Адсорбция ионных и неионных поверхностно-активных веществ
Свойства водных растворов неионных ПАВ сильно зависят от температуры. Следовательно, можно предположить, что адсорбция НПАВ на поверхностях также должна сильно зависеть от температуры. На Рис.6, а показана температурная зависимость адсорбции НС-Е20 на полиметилметакрилат-ном латексе, из которой видно, что адсорбция сильно увеличивается с повышением температуры. Эти результаты согласуются с представлениями о том, что полиоксиэтиленовые цепи при повышении температуры скручиваются и уменьшаются в размере, что приводит к увеличению параметра КПУ. Из Рис.6, б видно, что площадь поперечного сечения, приходящаяся на молекулу НПАВ, монотонно снижается с температурой.
Рис.6. Температурные зависимости адсорбции НС-Е20 на полиметилметакрилатном латексе и площади поперечного сечения молекулы НПАВ в поверхностном слое
Более глубоко разобраться в механизме адсорбции НПАВ на поверхности латексных частиц можно на основании измерений устойчивости этих систем. Известно, что НПАВ обеспечивают стерическую стабилизацию водных дисперсных систем благодаря того, что полиоксиэтиленовые цепи адсорбированного НПАВ направлены в водный раствор. Устойчивость коллоидных дисперсий удобно изучать в циклах замораживания-размораживания образцов или при наложении на суспензии механических сдвиговых нагрузок. Кроме того, можно оценивать устойчивость суспензий при введении в них электролитов. Мерой неустойчивости дисперсии служит количество скоагулировавшего осадка при соответствующих воздействиях. Рисунок 10 иллюстрирует влияние на устойчивость латексов, стабилизированных добавками НС-Ею или додецилсульфата натрия, механического нагружения, циклов замораживания-размораживания и введения соли.
Из рисунков видно, что ДСН обеспечивает хорошую устойчивость к механическому воздействию, но его адсорбция на частицах латекса не приводит к стабилизации по отношению к действию электролита и циклам замораживание - оттаивание. В то же время адсорбция неионного ПАВ на поверхности частиц латекса обеспечивает высокую устойчивость латекса по отношению ко всем трем типам воздействия. Например, механическая устойчивость достигается при поверхностной концентрации выше - 0.6-0.8 мг/м2. Это значение соответствует монослою НПАВ, в котором молекулы лежат плоско на поверхности. При повышении поверхностной концентрации полиоксиэтиленовые цепи начинают выходить в водный раствор, что обеспечивает повышение устойчивости к коагуляции, вызываемой механическим перемешиванием. Устойчивость к циклам замораживание-размораживание достигается лишь при поверхностной концентрации выше ~2-2.5 мг/м2, что соответствует полностью заполненному монослою НПАВ, в котором молекулы ПАВ образуют "частокол", т.е. их углеводородные цепи контактируют с поверхностью, а полиоксиэтиленовые цепи направлены в раствор.
2. Адсорбция ПАВ на гидрофильных поверхностях
2.1 Ионные ПАВ
При очень низких концентрациях ионные ПАВ адсорбируются на заряженных поверхностях почти исключительно по ионообменному механизму. Таким образом, противоионы диффузной части двойного электрического слоя вблизи поверхности вытесняются молекулами ПАВ, несущими тот же заряд. Ионный об мен приводит к повышению концентрации ПАВ вблизи поверхности по сравнению с его концентрацией в растворе. В результате на поверхности инициируется процесс мицеллообразования при концентрациях ПАВ в растворе значительно ниже ККМ. До сих пор остается дискуссионным вопрос о форме поверхностных мицелл: сферические они или полусферические. Но сам факт поверхностной агрегации молекул ПАВ при концентрациях ниже KKM не вызывает сомнений. При более высоких концентрациях ПАВ образуют на поверхности бислои, формирование которых заканчивается при ККМ. Нижний монослой бислоя не обязательно должен иметь плотнейшую упаковку. Зависимость адсорбции от концентрации ПАВ схематически представлена на рис.8, а, б; конкретный пример приведен на рис.8, в. Для отражения свойств систем при низких концентрациях оси ординат и абсцисс даны в логарифмическом масштабе.
Поверхностное агрегирование по природе аналогично мицеллообразованию, поэтому адсорбция также сильно зависит от длины алкильной цепи. Поверхностно-активное вещество с наибольшей длиной гидрофобной цепи адсорбируется в наибольшей степени. Из рис.9 видно, что адсорбция является кооперативным процессом, поскольку она резко возрастает в узком интервале концентраций. И наиболее значителен этот эффект для ПАВ с длинными "хвостами". Эти данные служат дополнительным доказательством сильной зависимости адсорбции от структуры молекул ПАВ и более слабой зависимости от взаимодействий молекул ПАВ с поверхностью.
Рис.7. Влияние введенных ПАВ на устойчивость латекса по отношению к различным воздействиям: механическим, в циклах замораживание-размораживание, при добавлении электролита
Единственное требование заключается в том, что ПАВ должно иметь небольшое сродство к поверхности, чтобы повышалась его поверхностная концентрация, вызывая образование поверхностных агрегатов, т.е. поверхностное мицеллообразование.
Адсорбция ионных ПАВ на гидрофильных поверхностях практически не зависит от температуры, как это видно из рис.10, б. Адсорбция изменяется всего на 10-20% при изменении температуры на 50°С. Максимум адсорбции наблюдается при 25 °С, что совпадает с минимальным значением KKM поверхностно-активного вещества при этой же температуре.
Рис. 9. Адсорбция некоторых катионных ПАВ на кремнеземе при рН 4. Кооперативность адсорбции возрастает с увеличением длины алкильных цепей
Рис.10. а - Адсорбция хлорида додецилпиридиния на каолине при трех различных значениях ионной силы, б - температурная зависимость адсорбции при трех концентрациях ДПХ выше изоэлектрической точки. С разрешения
2.2 Неионные ПАВ
Адсорбция неионных ПАВ на гидрофильных поверхностях контролируется взаимодействием между поверхностью и полиоксиэтиленовой цепью. Если такое взаимодействие есть, адсорбция протекает аналогично адсорбции ионных ПАВ на гидрофильных поверхностях. На рис.11 схематично представлена адсорбция неионного ПАВ на поверхности кремнезема. Кроме того, в этой системе наблюдается поверхностная агрегация ПАВ при концентрациях, намного меньших KKM поверхностно-активного вещества. Концентрация, при которой начинается поверхностное агрегирование, называется критической концентрацией поверхностного агрегирования. Эта величина имеет порядок одной десятой ККМ. На рис.11 ось ординат имеет линейный масштаб и поэтому изотерма имеет другую форму, чем на рис.8.
Изотермы адсорбции, похожие по виду на изотерму на рис.11, указывают на высокую степень кооперативности адсорбции выше точки ККПА. Адсорбция в этом случае может быть описана как индуцированная поверхностью самоорганизация. Отметим, что для индуцирования самоорганизации достаточно даже слабого взаимодействия ПАВ с поверхностью.