Финансовая математика
Задача 1
Вывести формулу для определения современной ценности р-срочной финансовой ренты с начислением процентов m раз в год.
Сумма членов геометрической прогрессии (P) определяется по формуле
,
где b1 - первый член геометрической прогрессии;
q - знаменатель прогрессии;
n - число членов прогрессии.
Если платежи производятся не один, а m раз в году, то размер платежа равен R/p. Члены ренты образуют ряд
.
Данный ряд представляет собой геометрическую прогрессию со знаменателем (1+j/m)-m/p, первым членом прогрессии и числом членов прогрессии nmp. Подставив данные в вышеуказанную формулу получаем сумму дисконтированных платежей или современную стоимость (Р) p-срочной ренты:
Приведя последнее выражение к общему знаменателю, и упростив его, получим формулу для расчета современной ценности р-срочной финансовой ренты с начислением процентов m раз в год:
Задача 2
Клиент внес в банк 14 000 д.ед. на срок с 14 февраля по 23 июля. На вклады «до востребования» сроком больше месяца банк начисляет 24 % простых годовых. Определите наращенную сумму при расчете по: а) точным процентам с точным числом дней; б) банковскому методу; в) обыкновенным процентам с приближенным числом дней. Год не високосный.
Решение:
Дано: Р = 14 000
срок c 14.02 по 23.07
i = 24 % (0,24)
Найти: S -?
Наращенная сумма вычисляется по формуле (декурсивный метод начисления простых процентов):
S = P + I,
где S – наращенная сумма или сумма задолженности, подлежащая погашению по окончании кредитного/депозитного договора, д.ед.;
Р – первоначальная сумма капитала или размер предоставленного кредита/депозита, д.ед.;
I –сумма процентов, начисленных за весь срок операции, д.ед.
Сумма начисленных процентов вычисляется по формуле
I = P * i * n,
где n - срок операции или период действия кредитного договора в годах;
i – простая процентная ставка для конверсионного периода, равного одному году, %.
Формула наращения по простым процентам
S = P + P*i*n = P*(1+i*n).
В случае, если n не равно целому количеству лет применяют формулу
S = P*(1+i*t/k),
где t – срок финансовой операции;
k – временная база (12 мес., 4 квартала, 360 /365 дней).
а) Определим наращенную сумму при расчете по точным процентам с точным числом дней в течение финансовой операции. Это Английская практика расчетов. В нашей задаче временная база k = 365 (год не високосный).
Посчитаем точное число дней в сроке с 14.02 (включая) по 23.07 (не включая).
t = 15 + 31 + 30 + 31 + 30 + 22 = 159 (дней)
Тогда S = 14 000 * (1+ 0,24 * 159 / 365) = 15 463,67 (д.ед.)
б) Определим наращенную сумму при расчете по банковскому методу, или обыкновенные % с точным числом дней в течение финансовой операции. Это Французская практика расчетов. Временная база k = 360 дней. Точное число дней рассчитывается аналогично первому варианту и равно t = 159 (дн.)
Тогда S = 14 000 * (1+ 0,24 * 159 / 360) = 15 483,99 (д.ед.)
в) Определим наращенную сумму при расчете по обыкновенным процентам с приближенным числом дней в течение финансовой операции.
Временная база k = 360 дней. Расчет числа дней операции производится исходя из предположения, что в каждом месяце 30 дней.
t = (14,15,16,…30) + 30 +30 + 30 + 30 + 22 = 159 (дней)
Тогда S = 14 000 * (1+ 0,24 * 159 / 360) = 15 483,99 (д.ед.)
Ответ: а) 15 463,67 д.ед.; б) 15 483,99 д.ед.; в) 15 483,99 д. ед.
Задача 3
Какой должна быть минимальная процентная ставка, чтобы произошло удвоение вклада за год при начислении процентов: а) поквартально, б) ежемесячно.
Решение:
Дано: Р
S = 2 P
m = 4, 12
Найти: j - ?
Наращение по сложным процентам вычисляется по формуле (декурсивный метод начисления по сложным процентам):
Sn = P* (1+ i)n ,
где Sn – наращенная сумма на конец n - го года, д.ед.;
P – первоначальная сумма денежных средств, д.ед.;
i - ставка сложных процентов, %;
n – срок операции наращения в годах;
(1+i)n - множитель наращения сложных процентов.
В случае если проценты начисляются чаще одного раза в год, то применяют формулу
S = P * ( 1 + j / m )mn
где j – годовая процентная ставка (номинальная), %;
m - число периодов капитализации процентов в течение года.
По условию задачи должно произойти удвоение вклада, т.е. S = 2 P,
тогда формула начисления процентов имеет вид:
2 P = P * ( 1 + j / m )mn, отсюда
j = m * ( mn 2P/ P – 1)
а) Проценты начисляются поквартально, т.е. m = 4, тогда
j = 4 * ( 4*12P/ P – 1) = 4 * ( 4 2 – 1) = 4 * (1,189 – 1) = 0,76 (%)
б) Проценты начисляются ежемесячно, т.е. m = 12, тогда
j = 12 * ( 12*1 2P/ P – 1) = 12 * (12 2 – 1) = 12 * (1,06 – 1) = 0,72 (%)
Ответ: j = 0,76%; 0,72 %
Задача 4
Покупатель обязался уплатить фермеру за купленное у него зерно 3 500 000 д.ед. через 2 месяца после покупки, 3 000 000 - ещё через 2 месяца и 5 200 000 - ещё через 3 месяца. Стороны договорились объединить эти платежи в один и выплатить его через 5 месяцев после покупки. Чему равен этот платёж, если на деньги начисляется 8 % годовых?
Решение:
Дано:
3 500 тыс. 3 000 тыс. А0 -? 5 200 тыс.
* * * * *
0 2 мес. 4 мес. 5 мес. 7 мес.
60 дн. 120 дн. 150 дн. 210 дн.
n0
i = 8% годовых
Найти: А0 - ?
Если в задаче не указано, то количество дней в году принимаем - 360 и количество дней в каждом месяце будет - 30. (Применим немецкую практику расчета).
Для решения данной задачи используется уравнение эквивалентности, в котором сумма платежей по первоначальным условиям приводится к выбранному моменту времени и приравнивается к сумме платежей по новым условиям по этому же моменту времени.
В нашем случае совокупность платежей заменяется одним новым платежом и если известен срок объединенного платежа, то нахождение суммы объединенного платежа при известном сроке и начислении простых процентов вычисляется по формуле: