Взаимодействие коротких акустических импульсов с неоднородностями на поверхности твердого тела
В настоящее время продолжаются интенсивные как экспериментальные так и теоретические исследования по генерации сверхкоротких импульсов деформации, а также исследования поверхностей с использованием ПАВ. Теоретический анализ проблем направлен на выяснение оптимальных условий ОА преобразования и изучение физических процессов, определяющих длительность акустического отклика при сверхкоротком лазерном воздействии и преобразования акустического импульса неоднородностями на поверхности. Акустические методы исследования обладают многообещающими спектроскопическими возможностями. Поскольку пространственная протяженность акустического импульса длительностью 10 пс. составляет величину порядка @50 ангстрем, что всего лишь на порядок превышает характерный размер ячейки кристаллической решетки [5,6], то дальнейшее развитие физики сверхкоротких акустических импульсов представляет определенный интерес для акустической спектроскопии и диагностики.
В настоящее время актуальной проблемой является создание компактных лазерных систем, использующих оптоакустический эффект для экспресс-анализа физических параметров исследуемого объекта.
Совершенствование экспериментальной техники отражается и на методах регистрации широкополосного акустического сигнала в поглощающей среде. Кроме контактных методов регистрации с помощью пьезоэлектрических преобразователей, активно используются бесконтактные оптические методы детектирования объемных и поверхностных акустических волн [2,3,5]. Именно этот метод отрабатывается в данной работе. Схема данного эксперимента представлена на рисунке 3.
В основе оптических схем регистрации ПАВ лежит детектирование пробным лазерным лучом локальных искажений поверхности (смещение поверхности, наклон, кривизна, скорость смещения поверхности), индуцированных распространяющимися на поверхности акустическими волнами. Поверхностный рельеф, связанный с распространением волны, можно сравнительно просто обнаружить по изменению угла отражения пробного луча. Для измерения смещения поверхности и скорости смещения поверхности эффективными оказываются также и интерферометрические методы.
Наносекундная лазерная система для исследования поверхностных акустических волн .
В данной работе для возбуждения и исследования ПАВ использовалась импульсная лазерная система, основные компоненты которой изображены на рисунке 4. Источником лазерных импульсов (которыми возбуждалась поверхностная волна) длительностью 20 наносекунд является твердотельный лазер на стекле с неодимом. Энергия одиночного импульса на выходе в одномодовом режиме генерации @ 10 мДж. В оптической схеме возможно осуществлять генерацию второй гармоники в нелинейном кристалле KDP. Таким образом в данной установке импульсное излучение лазера с длиной волны l=1.06 мкм ( hn=1.17 эВ ) легко может быть преобразовано в излучение второй ( l=0.53 мкм, hn=2.34 эВ ) гармоники. Телескопический расширитель луча составленный из линз Л4, Л5 и диафрагмы Д3 используется для формирования лазерного пучка накачки с определенными геометрическими параметрами, которые, при необходимости, можно варьировать. Цилиндрическая линза Л6 фокусирует световой луч в прямолинейную полоску длиной примерно 5 мм и шириной <50 мкм, поэтому фронт ПАВ приближенно можно считать плоским. Фотоприемник ФП1 используется для синхронизации акустического импульса с лазерным. Для регистрации ПАВ используется He-Ne лазер с длиной волны 0,632 мкм. Линзы Л1, Л2 а так же диафрагмы Д1, Д2 используются для получения пучка с гауссовым профилем. Линза Л3 фокусирует пробный луч на образец. Система регистрации отраженного луча состоит из линз Л7, Л8, Л9, ножа Фуко и фотоприемника ФП2. Нож Фуко используется как интерференционный прибор, позволяющий преобразовать малейшие изменения фазовых соотношений в отраженном луче в амплитудные, которые могут быть зарегистрированы фотодиодом.
|
Экспериментальные результаты.
Экспериментальные исследования проводились с целью обнаружения, предсказываемых теорией, затухания и замедления волны Рэлея при распространении по шероховатым поверхностям и мелкомасштабным периодическим структурам. Эксперименты проводились на трех образцах, имеющих различную структуру неоднородностей на поверхности.
Во-первых исследовалась структура состоящая из наноразмерных кластеров кремния на поверхности кристаллического кремния. Данная структура была получена посредством лазеро-индуцированного осаждения Si из газовой фазы (LCVD метод), при разложении газа SiF4 в фокусе непрерывного перестраиваемого по длине волны CO2 лазера. LCVD производилось при комнатной температуре, поэтому поверхность имеет кластерную структуру сложной морфологии. Изучение структуры на атомно-силовом микроскопе (рис.5) показало, что средний размер неоднородности составляет ~1500 нм., а высота неровностей порядка 450 нм Пользуясь формулами (21) и (22) можно оценить ожидаемое замедление рэлеевской волны на шероховатой поверхности, по сравнению с волной на гладкой поверхности. В приближении неровности, описываемой функцией (формула (21)) [7], получаем, что скорость волны уменьшается в среднем на величину 198 м/с., а расчетное замедление волны при использовании модели треугольной неровности (формула (22)) [7] составляет 135 м/с. Экспериментально полученные профили волн для на неоднородной поверхности кремния представлены на рисунке 6. Профили акустических импульсов сдвинуты, т. е. наблюдается замедление рэлеевской волны, которое в данном случае составляет 161 м/с. Амплитуда импульса на гладкой поверхности (профиль 1) меньше, чем амплитуда импульса на неоднородной поверхности (профиль 2), это связано с тем, что возбуждение