Теория процентов
Простые проценты — это проценты, начисляемые на фактическую сумму за фактический период нахождения ее на депозите. Доход, уплачиваемый на такие объекты, как депозитные сертификаты, облигации и другие формы инвестирования, по которым выплачиваются проценты, наиболее часто вычисляется с использованием метода простых процентов. Проценты выплачиваются только на фактический остаток за то время, когда эта сумма действительно находится на депозите.
Если у вас на депозите, по которому выплачивается 6%, положено 100 долл. на 1,5 года, вы получили бы 9 долл. в виде процентов (1,5 х 0,06 х 100) за этот период. Если бы вы изъяли 50 долл. в середине года, общая сумма процентов, полученная вами за 1,5 года, составила бы 6 долл., поскольку вы получили бы 3 долл. со 100 долл. за первые полгода (0,5 х 0,06 х 100) и 3 долл. с 50 долл. за оставшееся время — полный год (1 х 0,06 х 50) [12. с. 210-220].
Используя метод простых процентов, получаем, что объявленная ставка процента — это действительная (эффективная) ставка процента (или дохода), т.е. ставка процента, действительно полученного на фактическую сумму за фактический период, в течение которого она находилась на депозите. В приведенном выше примере действительная ставка процента составила бы 6%. Поскольку ставка процента отражает ставку, по которой начисляется текущий доход независимо от размера вклада, она является полезной мерой текущего дохода.
Сложные проценты — это проценты, начисляемые не только на первоначальную сумму вклада, но также и на всю сумму процентов, накопленную за определенный период. Сложные проценты выплачиваются не только на первоначальную сумму вклада, но также на некоторую сумму процентов, накопленную от одного периода до другого. Этот метод часто используется сберегательными организациями [6. с. 65-78].
Непрерывное начисление процентов — это метод вычисления процентов, при котором проценты реинвестируются за самые короткие из возможных промежутки времени; приводит к получению максимальной нормы доходности при данной объявленной ставке процента.
Джон Мейнард Кейнс называл это магией. Говорят, что один из Ротшильдов провозгласил это восьмым чудом света. Сегодня люди продолжают превозносить их чудодейственность.
Объект их восхищения — сложные проценты — предмет, который приводит в замешательство одних и поражает воображение других.
И все же понимание сложных процентов может помочь людям вычислить доход от сбережений и инвестиций так же, как и цену займа. Эти вычисления применимы почти к любому финансовому решению — от реинвестирования дивидендов до покупки облигации с нулевым купоном для индивидуального пенсионного счета.
Проще говоря, сложные проценты — это начисление «процентов на проценты». Проценты, начисленные по истечении определенного периода, например года, добавляются к основной сумме и включаются в ту сумму, на которую в следующий период будут начисляться проценты.
Ричард П. Бриф, профессор бизнеса Нью-Йоркского университета, считает, что «вычисление [сложных процентов] должно быть понятно большинству людей» [12. с. 210-220].
Метод сложных процентов интриговал людей всегда. В начале прошлого века английский астроном Фрэнсис Бейли подсчитал, что британский пенс, инвестированный под 5% годовых на условиях сложных процентов в год рождения Христа, принес бы к 1810 г. столько золота, что его хватило бы для заполнения 357 млн. земных шаров. Бенджамин Франклин был более практичен. После своей смерти в 1790 г. он оставил по 1000 фунтов двум городам — Бостону и Филадельфии с условием, что они не будут трогать эти деньги в течение 100 лет. Наследство Бостона, эквивалентное примерно 4600 долл., к 1890 г. увеличилось до 332000 долл.
Но делающим сбережения лицам и инвесторам не нужно жить до 100 лет, чтобы получить выгоды [10. с. 114-123].
Рассмотрим инвестирование с текущей стоимостью в 10000 долл., на которые ежегодно начисляется 8%. После первого года размер их возрастет до 10800 долл. (1,08 х 10000). После второго года они будут стоить 11664 долл. (1,08 х 10800). Еще через три года сумма возрастет до 14693 долл. Такая же концепция применима к потребительским кредитам. Ссуда в 10000 долл. под 8 сложных процентов, начисляемых раз в год, будет оцениваться в 14693 долл. (сумма, которую необходимо возвратить) через 5 лет [12. с. 210-220].
Инвесторы и делающие сбережения лица могут также использовать упрощенное эмпирическое правило для определения того, как долго нужно ждать удвоения суммы денег при данной процентной ставке с начислением процентов раз в год: разделите 72 на ставку процента. Например, инвестиции в 10000 долл., приносящие доход в 8% в год, удвоились бы через 9 лет (72:8).
Но следовало бы знать, что инфляция тоже развивается по принципу сложного процента. Пока инфляция не исчезнет, эти планируемые 20000 долл. через 9 лет будут стоить несколько меньше, чем они стоят теперь[10. с. 114-123].
Когда проценты выплачиваются ежегодно, вычисления по методу сложных и простых процентов приведут к одинаковому результату; в этом случае объявленная ставка процента и действительная ставка будут равны. Данные табл. 1 могут быть использованы для иллюстрации метода вычисления сложных процентов. В этом случае процентный доход, получаемый каждый год, остается на депозите, а не изымается. 50 долл., полученных с 1000 долл. в виде процентов за 1989 г., становятся частью остатка, на который выплачиваются проценты в 1990 г., и т.д.
Следует обратить внимание на то, что в процессе вычисления сложных процентов используется и метод простых процентов, т.е. проценты рассчитываются только на фактическую сумму за фактический период, в течение которого она находилась на депозите [6. с. 65-78].
Таблица 1. Данные об остатках сберегательного счета (при годовом начислении и реинвестировании по ставке 5%)
Дата |
(1) Вклад (или изъятие) (в долл.) |
(2) Остаток на счете на начало периода (в долл.) |
(3) Проценты за год (в долл.) |
(4) (2+З) Остаток на счете на конец периода (в долл.) |
1 янв. 1989 г. |
1000 |
1000,00 |
50,00 |
1050,00 |
1 янв. 1990 г. |
(300) |
750,00 |
37,50 |
787,50 |
1 янв. 1991 г. |
1000 |
1787,50 |
89,38 |
1876,88 |
Таблица 2. Данные об остатках сберегательного счета (при полугодовом начислении и реинвестировании по ставке 5%)
Дата |
(1) Вклад (или изъятие) (в долл.) |
(2) Остаток на счете на начало периода (в долл.) |
(3) Проценты за год (в долл.) |
(4) (2)+(3) Остаток на счете на конец периода (в долл.) |
1 янв. 1989 г. |
1000 |
1000,00 |
25,00 |
1025,00 |
7 янв. 1989г. |
1025,00 |
25,63 |
1050,63 | |
1 янв. 1990 г. |
(300) |
750,63 |
18,77 |
769,40 |
7 янв. 1990г. |
769,40 |
19,24 |
788,64 | |
1 янв. 1991 г. |
1000 |
1788,64 |
44,72 |
1833,36 |
7 янв. 1991 г. |
1833,36 |
45,83 |
1879,19 |