Понятие и характеристики финансовых рисков. Методы оценки риска
Рефераты >> Финансы >> Понятие и характеристики финансовых рисков. Методы оценки риска

Т.е. безрисковые актив имеет фиксированный доход и нулевую вероятность неуплаты (государственные ценные бумаги).

При этом срок погашения совпадает с периодом владения, т.е. отсутствует неопределенность.

Такое инвестирование называется безрисковым кредитованием.

Появление новых возможностей при инвестировании существенно расширяет достижимое множество портфеля активов и изменяет расположение эффективного множества.

Рассмотрим ожидаемую доходность и стандартное отклонение для портфеля, состоящего из инвестиций в безрисковые активы в сочетании с одним рисковым активом.

Пример:

A, B, C + 1 безрисковый актив

х1 – доля актива

х4 = 1 – х1 – доля в безрисковом активе

Портфели

х1

х4

rp

σp

A

0,00

1,00

4%

0,0

B

0,25

0,75

7,05%

3,02

C

0,5

0,5

10,10%

6,04

D

0,75

0,25

13,15%

9,06

Предположим, что х4 имеет ставку доходности 4%.

r4 = 4%

r1 = 16,2%

Любой портфель, состоящий из комбинации безрисковых и рисковых активов, будут иметь ожидаемую доходность и стандартное отклонение, которые лежат на одной прямой, соединяющей точки, соответствующие этим активам.

Одновременное инвестирование в безрисковые активы и рисковый портфель

Рассмотрим, что произойдет, когда портфель, состоящий их активов А и С (0,8 и 0,2 соответственно) - рисковый портфель объединен с безрисковыми активами.

rp и σр для рискового портфеля и безрисковых активов могут быть рассчитаны аналогичным путем.

Рассмотрим инвестиции в портфель, состоящий из портфеля А и С и безрисковых активов.

xpAC = 0,25

х4 = 0,75

Объединение безрисковых активов с рисковым портфелем может рассматриваться точно также как и объединение безрисковых активов с рисковыми активами.

В обоих случая их доходности и стандартное отклонение лежат на прямой линии, соединяющей крайние точки.

16. Влияние безрискового кредитования на эффективное множество

Для безрисковых активов А, В и С.

хА = 0,12

хВ = 0,19

хС = 0,69

rpт = 22,4%

σрт = 15,2%

Особенности портфеля Т:

1. Из существующего портфеля, состоящих из этих активов, который будучи соединен прямой линией с точкой, соответствующей безрисковому активу, лежал бы выше и левее данного портфеля, т.е. это наиболее оптимальный портфель.

2. Первое условие важно, потом что часть эффективного множества в модели Марковца отсекается этой линией.

Теперь эффективное множество состоит из прямой линии и искривленного отрезка.

17. Учет возможностей безрискового заимствования

Если рассматривать возможность заимствования, то инвестор:

- не ограничен начальным капиталом;

- платит проценты по займам.

Если ставка процентов и известная и неопределенность отсутствует, то можно говорить о безрисковом заимствовании.

Предполагается, что процентная ставка по займам равна ставке, которая может быть заработана инвестором при инвестировании в безрисковые активы.

В данном случае безрисковая ставка равна процентам по займам (4%).

Если мы говорим о безрисковом кредитовании, то доля х4 положительная (х4 > 0).

Если же мы говорим о безрисковом заимствовании, то доля х4 отрицательная (x4 < 0).

Пример:

10 000$ инвестируем в хрАС = 1

12 500$ - вкладываем, 2 500$ - заимствование

х4 = - 0,25

хрАС = 1,25 + (-0,25) = 1

хрАС = 1,25

Лучи означают возможность одновременного использования и безрискового кредитования, и безрискового заимствования.

Если используется безрисковое заимствование, то точки расп-ся.

18. Особенности управления финансовыми рисками облигаций

Рассмотрим инвесторов, которые считают, что в некоторых случаях на основе общей доступной информации можно выделить облигации, неверно оцененные рынком.

Иными словами, инвестор мог бы оценить истинную или внутреннюю стоимость облигации и сравнить ее с рыночным курсом, а именно, если текущий рыночный курс ниже, чем истинная стоимость облигаций, то это недооцененная облигация, а если выше – переоцененная.

Инвестор, верящий в эффективность рынка облигации, ставит под сомнение способности других инвесторов выявить случаи неверной оценки облигаций рынком.

Однако если инвестор полагает, что такие случаи возможны, то ему необходим экономический метод их выявления.

Таким методом является метод оценки путем капитализации доходов. Этот метод предполагает, что внутренняя стоимость любого актива основана на дисконтированной величине платежей, которые инвестор ожидает получить в будущем за счет владения этим активом.

Способ применения указанного метода к оценке облигации состоит в сравнении значения y-доходности к погашению облигации со значением у* – правильной по мнению инвестора доходностью погашения.

Если y > у*, то облигация недооценена.

Если у < у*, то облигация переоценена.


Страница: