Корпоративные финансы
Рефераты >> Финансы >> Корпоративные финансы

t t t … t

Рисунок – Определение текущей, современной стоимости обычного аннуитета

Где: PV-текущая, современная стоимость обычного аннуитета

PV = PMT * = PMT *FM4 (r;n) , (4.1)

где FM4 (r; n) – фактор текущей стоимости аннуитета (фактор Инвуда), коэффициент дисконтирования ренты, который показывает, чему равна с позиции текущего момента стоимость аннуитета с регулярным денежным поступлением в размере одной денежной единицы, продолжающегося «n» равных периодов с заданной процентной ставкой «r». Табличные значения приведены в Таблице 4 Приложения.

Функция текущей стоимости аннуитета также имеет особое значение для оценки имущества доходным методом. Связано это с тем, что в процессе выполнения оценки анализируются будущие потоки доходов с точки зрения их сегодняшней стоимости.

Математическое выражение для расчета текущей стоимости авансового аннуитета имеет следующий вид:

PV = PMT * = PMT *[FM4(r;n-1) + 1] (4.1.1)

Пример. Компания должна принять решение: сдавать ли в аренду имущество сроком на 5 лет, при условии, что арендная плата составляет 50 000 тенге в год с условием выкупа, если сегодня за данное имущество предлагают 160 000 тенге. Платеж осуществляется в конце года. Коэффициент рентабельности ( r ) равен 20% - справедливая норма прибыли по аналогичным сделкам.

Решение

Определим текущую стоимость арендной платы, используя формулу 4.1 и Таблицу 4:

PV = 50*FM4(20%, 5 лет) = 502,991 = 149,55 (тыс. тенге)

Таким образом, получили, что текущая стоимость арендной платы составляет 149,55 тыс. тенге, а нам предложили больше – 160 тыс. тенге, значит, стоит продавать имущество.

Используя схему 4 и формулу (4.1) можно определить величину члена ренты по ее текущей стоимости:

PMT = (4.2)

1/FM4 – фактор амортизации капитала, определяет размер стабильного равновеликого периодического платежа, погашающего за определенный период при установленной ставке процента основную сумму кредита и процент за не возмещенную сумму кредита (см. пример поэтапного погашения долга равными срочными уплатами).

ОПРЕДЕЛЕНИЕ СТОИМОСТИ БЕССРОЧНОГО АННУИТЕТА

Аннуитет называется бессрочным, если денежные поступления продолжаются долгое время. Определение в этом случае будущей стоимости аннуитета не имеет смысла, а приведенная текущая стоимость аннуитета постнумерандо может быть получена по следующей формуле:

PVа = (4.3)

Планирование погашения ДОЛГОСРОЧНОЙ задолженности

Важным практическим приложением теории аннуитетов является составление различных вариантов (планов) погашения задолженности. При составлении плана погашения задолженности интерес представляют размеры периодических платежей заемщика, так называемые срочные уплаты или суммы по обслуживанию долга, которые представляют собой сумму:

Iг + Pг,

где - срочная уплата;

Iг – годовая сумма процентов;

Pг – годовые выплаты по погашению основного долга.

Методы определения размера срочных уплат зависят от условий контракта которые предусматривают:

¨ срок займа;

¨ продолжительность льготного периода, в течение которого основная сумма долга не погашается, проценты обычно выплачиваются на протяжении всего срока займа, но иногда начисляются и присоединяются к основной сумме долга;

¨ уровень процентной ставки;

¨ метод погашения и уплаты процентов и основной суммы долга.

На практике существуют различные варианты погашения долгосрочной задолженности. Рассмотрим основные из них:

Введем обозначения:

Д - основная сумма долга;

Дt – остаток задолженности на начало t-ого года;

r– ставка процента по займу;

g – процентная ставка, по которой начисляются проценты на взносы в погасительный фонд;

R – размер взноса в погасительный фонд;

n – срок предоставления займа.

I - годовые проценты по займу;

Р - годовая сумма погашения основного долга.

Вариант 1 Займы без обязательного погашения, по которым постоянно выплачиваются проценты (вечный аннуитет)

Y = Д

Вариант 2. Погашение суммы долга единовременным платежом:

2.1 без создания погасительного фонда, тогда в конце срока займа заемщик должен вернуть сумму долга, равную:

· либо основной сумме долга Д, если проценты начисляются и выплачиваются по годам;

· либо наращенной основной сумме долга Д, если проценты начисляются, но не выплачиваются, а присоединяются к основной сумме долга

Д = Д0(r; n)

2.2 при условии создания погасительного фонда. Если заемщик должен вернуть всю сумму долга в конце срока, то в контракте для снижения риска невозврата долга может быть оговорена необходимость создания погасительного фонда. На периодические взносы в этот фонд начисляются проценты по ставке g. Создание погасительного фонда для заемщика выгодно только при условии g>r, в противном случае выгоднее сразу расплачиваться этими суммами с кредитором.

При этом возможны следующие ситуации:

· проценты начисляются и выплачиваются, тогда на конец срока займа должен быть создан погасительный фонд, равный основной сумме долга Д. Для определения в этом случае ежегодных взносов в погасительный фонд R воспользуемся схемой 3 и формулой 3.2:

R =


Страница: